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Abstract 

 

A format specification for the Jmol voxel (JVXL) file format is proposed. The purpose of the 

JVXL file format is to provide a mechanism for the efficient delivery of molecular surface data 

(orbitals, electron density plots, electrostatic potential maps, etc.) from a web server to a client 

page in a compact manner. The format was designed to be used specifically with the open-source 

Jmol molecular viewing and analysis applet (http://jmol.sourceforge.net), but the format has 

general utility anywhere a Gaussian CUBE file might be employed. Whereas typical CUBE files 

are on the order of 1-10 Mb in size, the derived JVXL files are 400-1000 times smaller, on the 

order of 5-10Kb. The Jmol applet can read and write the JVXL file format, and currently it is the 

only application that can be used to create JVXL files.  

 

Background 

 

Computed molecular orbitals and electron density data are typically stored in Gaussian CUBE 

file format [http://local.wasp.uwa.edu.au/~pbourke/dataformats/cube/]. Electrostatic potential 

map data for biomolecules can be produced by the open source APBS (Adaptive Poisson-

Boltzmann Solver) program [http://apbs.sourceforge.net/], which saves the data in a “multigrid 

DX” format similar to Gaussian’s CUBE format.  These files, even for small molecules, tend to 

be inconveniently large in the context of the web – on the order of 1-10 Mb even for relatively 

small molecules such as acrolein
1
 and benzene

2
 and much larger for proteins. The core data 

section of a CUBE file consists of a list of numerical values, each representing the value of some 

particular molecular quantity at a specific x,y,z position within a molecular space. The number of 

data points involved depends upon the resolution of the grid and the size of the space. It is not 

uncommon for CUBE files to hold from 10,000 to 500,000 data points, each requiring 13 bytes 

of storage space. CUBE files may contain any number of such lists. The size of cube files has 

proven a formidable deterrent to the real-time display of three-dimensional models of molecular 

surfaces on the web.  

 

The JVXL Solution 

 

Whereas the CUBE file contains the complete data set associated with a molecular parameter, 

typical use of CUBE file data is to display only a two-dimensional surface – the 95% probability 

surface for a molecular orbital, or the electrostatic potential of a molecule mapped onto an 

electron density surface. It is this characteristic use of the CUBE file that makes the JVXL 

format of great utility, for the JVXL file contains all the information needed to depict a finite, 

predetermined number of surfaces derived from the data stored in one or more CUBE files. This 

information turns out to be representable in far fewer bytes than the complete data set. The trade-

off is that JVXL files do not contain the entire data set – they cannot be used to regenerate 

CUBE files, and they cannot be used to display any more surfaces than the designer has loaded 



them with in the first place. Nonetheless, since the typical use of CUBE files is to present one or 

possibly a small number of surface representations, this is not in general a problem.  

 

 

 

 

 

 

LEFT: 

A map of the electrostatic potential of 1dry.pdb 

onto the van der Waals-radius surface.  

(65K JVXL file 1dry-mep.jvxl) 

 

 

 

 

BELOW: 

Cavities in 3dfr.pdb rendered using Jmol; file 

sizes 27K (left), and 37K (right). 

 

 

 

 

 

 

 

 

 



General JVXL File Formats 

 

The JVXL file consists of two sections, a header section, and a data section, consisting of one or 

more surface descriptions. The header section is identical to the CUBE file header section, 

though freer in format. (Indeed, Jmol reads JVXL files with the same reader it uses for CUBE 

files in terms of reading atom coordinates.)  The header section consists of the following subsets: 

 

 

 

TABLE 1. JVXL (CUBE) FILE HEADER SECTION 

 

Lines 1 and 2: 

comments 

  Title Card Required potential=scf 

 Electrostatic potential from Total SCF Density 

Line 3: a negative 

number (-N) 

representing the 

number of atoms 

followed by the origin 

of the “voxel space”,  

(x,y,z).  N must be 

negative; it cannot be 

zero. Units are Bohr 

unless the optional 

keyword 

ANGSTROMS (with 

or without the 

brackets) is also on 

that line. 

   -5   -8.140940   -8.140940   -8.643459 [ANGSTROMS] 
 
   -N        x          y           z 

Lines 4: the number of 

data points along the 

“X” coordinate (NX), 

as defined by the 

vector (x,y,z). 

 

   50    0.333333    0.000000    0.000000 
 
   NX        x          y           z 

Line 5: same for Y    50    0.000000    0.333333    0.000000 

Line 6: same for Z    55    0.000000    0.000000    0.333333 

Lines (6+1) – (6+N): 

Atomic number in 

integer and real format 

along with Cartesian 

coordinates of each of 

the N atoms. There 

must be at least one 

atom. 

    6    6.000000    0.000000    0.000000   -2.130707 
    1    1.000000    0.000000    1.932284   -2.775380 
    1    1.000000    1.673407   -0.966142   -2.775380 
    1    1.000000   -1.673407   -0.966142   -2.775380 
   17   17.000000    0.000000    0.000000    1.241787 
 

Line 7 + N: 

A negative number  

(-NS)  indicating the 

number of surface 

specifications, 

followed by four 

encoding numbers 

-1  35 90 35 90 Jmol voxel format version 0.9b 
 
-NS EB ER CB CR 



(EB, ER, CB, CR) 

described below, and 

any additional text, 

possibly indicating the 

file format version  

It is not important that all atoms in a molecular system be represented here. The only significant 

difference between the JVXL and CUBE headers is that for the JVXL file at least one atom must 

be indicated, because a negative number for the number of atoms in a cube file indicates that the 

(7+N)th header line will be present. The negative number on that (7+N)th line distinguishes this 

file from a Gaussian CUBE file, where a positive number indicates the number of data set lists 

that follow.  

 

In a CUBE file what now follows is an (NX x NY x NZ)-long list of numbers. In a JXVL file 

what follows is a data section, consisting of (NS) surface descriptions. The four numbers EB, 

ER, CB, and CR indicate how edge and color data were encoded into ASCII character format. 

Currently, these numbers are fixed by the Jmol software and are not user-adjustable. 

 

Surface descriptions are of several types: 

 

• Unmapped curved isosurfaces (Table 2). 

• Color-Mapped isosurfaces (Table 3). 

• Color-Contoured planar slices through CUBE data (Table 4). 

 

Unmapped curved isosurfaces (Table 2). These surfaces are either 

derived from CUBE data by specifying a cutoff value or derived 

from the model itself in the form of a “solvent excluded surface” or 

“solvent-accessible surface”. In Jmol the script command is simply: 

 
   isosurface myname 0.05 “myfile.cube” 

 
or 
 
   set solvent 1.4; isosurface solvent 

 

or using a JVXL file, where the cutoff has been predetermined: 

 
   isosurface myname “myfile.jvxl” 

 
     

Color-Mapped isosurfaces (Table 3). These are isosurfaces that 

have been overlaid with data from a second CUBE file. The Jmol 

script command allows for the optional designation of a range over 

which the colors red to blue should be applied: 
 
   isosurface myname 0.05 “myfile.cube”  

    color absolute 0.0 0.2 “mydata.cube” 

 
 
The JVXL equivalent requires nothing more than for an unmapped   

isosurface, since a JVXL file includes the cutoff and coloring ranges 

as predetermined values: 

 
   isosurface myname “myfile.jvxl” 



 

 

The JVXL format also allows for a “high precision” color compression that takes up about twice 

as much space but allows for remapping of the colors by the end user. See the note under high 

precision color, below. 

 

Color-Contoured planar slices through CUBE data (Table 4). 
These are color-contoured surfaces created by first generating the 

intersection points of a plane with a voxel grid, then using those 

points as a basis for a marching squares (2D) contouring of the 

planar grid of data.  
 

 

TABLE 2. JVXL FILE SURFACE SPECIFICATION (nonplanar surface) 

 

Variable number of blank 

lines or comments 

# comments begin with  a # sign; blank lines are ignored 

 

# any number of such lines are allowed  

 

Surface description line: 

the cutoff used for the 

computation of the surface 

(CO, for information 

only), the number of bytes 

of grid point data (NP), 

the number of bytes of 

edge data (NE), and a flag 

(NC) indicating whether 

colors data are present 

(NC=NE) or not (NC=-1) 

anything else on this line 

is informational only  

0.02 6457 8076 -1 compressionRatio=462.06357 
 CO   NP   NE  NC 

One or more lines of  

integer surface voxel 

bitmap data (described 

below) 

 

  115922 2 6333 4 91 6 90 7 88 8 88 8 89 6 91 . . . 

One or more lines of 

ASCII-encoded  edge 

fraction data (described 

below) 

3_+I6B3qPV4LVSwC{/K'_+G]fcUy6Il<3; . . . 

One or more lines of 

ASCII-encoded color 

mapping data (optionally 

compressed; described 

below) 

7777889989:;;::<==:<=###$####$$%22223333###$ . . . 

 



 

 

 

TABLE 3. JVXL FILE SURFACE SPECIFICATION (planar surface) 

 

Variable number of blank 

lines or comments 

# comments begin with  a # sign; blank lines are ignored 

 

# any number of such lines are allowed  

 

Surface description line 

with plane indicated by -1 

in both NP and NE. Four 

additional parameters (PA, 

PB, PC, and PD) defining 

the plane are required. 

0.0 -1 -1 2500 0.0 0.0 1.0 0.0  
 CO NP NE  NC  PA  PB  PC  PD 
 

   

One or more lines of 

ASCII-encoded and 

compressed color 

mapping data. 

#~871 $~6 #~40 $$%&'''&%$#~38 $%')+,,+) . . . 

 

JVXL Surface Data 

To understand what is present in the three surface data fields, one must understand the essentials 

of the isosurface method. In this method, the space surrounding a surface is considered to be a 

set of points laid out in a rectilinear or parallelepiped grid. (The format does not require that the 

axes be orthogonal, but typically they are.) An isosurface is defined as a surface through these 

points where a given parameter has a constant value (Figure 1).  

 
 

Figure 1. An isosurface surrounded by a 5 x 2 x 3 grid of data points. The key point is that much 

of the data points are unnecessary.  

 

 



The first thing to understand is that the only significant information we require are the 

approximate positions where the surface cuts the lines between the data points. It will be these 

intersection points that are then turned into a series of triangles for surface rendering. Thus, no 

information in volumes V11, V21, V14, or  V24 are required. In fact, what we need to do is focus 

on the edges. We need only consider the edges where one end is on one side of the surface and 

the other end is on the other side – edges cut by the surface. If we can identify which edges these 

are and where along each edge the surface cuts, we have all we need. Figure 2 shows a close-up 

of one such surface. 

 

Figure 2. Two slices through a surface showing the relationship between the surface points used 

for triangulation (green) at intersections of the surface with edges of the grid.  

 

The first set of surface data in a JVXL file maps out which data points are critical for surface 

construction – only those that terminate intersecting edges. Some are “inside”, and some are 

“outside” the surface. We simply count along in a systematic way. Using the for loop: 

 

      for (int x = 0; x < voxelCountX; x++) { 

        for (int y = 0; y < voxelCountY; y++) { 

          for (int z = 0; z < voxelCountZ; z++) { 

 

we run through all the “voxels” and determine whether the value at each is closer to 0 than a 

predetermined cutoff value (“outside”) or further from 0 (“inside”). We simply list the number of 

voxels found sequentially on each side: 115922 outside, 2 inside, 6333 outside, 4 inside… 

forming a relatively compact yet readable surface voxel bitmap. 

 

Edge Fraction Data 

 

The surface voxel bitmap data is enough information to be able to reconstruct which edges are 

the “critical” edges. Having done that, we go back through the voxels using the marching cube 

algorithm,
3
 this time running through each critical edge and estimating the position of the 

intersection of the surface with the edge. The edges are numbered and gone through sequentially 

from highest numbered to lowest (11 to 0, Figure 3) using a clever method that never checks any 

edge twice.  



 
 

Figure 3. Edge numbering. 

 

 

Only edges that have one end inside and one end outside are recorded. Based on the two values 

for the property at each end of the edge and the known cutoff value, a fraction is determined by 

linear interpolation: 

 

      fraction = (cutoff - valueA) / (valueB - valueA); 

 

It is this set of critical-edge fractions, then, 

that is encoded in the form of the edge 

fraction data. Encoding is carried out 

simply by determining the ASCII 

character that is that fraction of the way 

from the edge base character (EB, 35, ‘#’) 

to an end character (125, ‘}’) along a 

range of ASCII values (ER, 90). Since the 

fraction is rounded down to the nearest 

integer, the actual range is from 0 to  

ER – 1. The end character itself is not 

represented in this series. (A point at the 

“end” of one edge would be at the 

“beginning” of another and is not recorded 

twice.)  The end character itself (125, ‘}’) 

is reserved for “no value,” thus allowing 

for surface fragments. (In Jmol the value 

at that position in the grid is recorded as 

“Not-A-Number”, Float.NaN.)     

 

The only hitch in this scheme is that the backslash character, ‘\’, 92, is in this range. To ensure 

that backslash is not encoded, because it often has special meaning in strings in many 

programming languages, we encode backslash as an exclamation point (‘!’, 33). The only other 

character that might give problems is double quote, but it is outside this range (ASCII 34).  

 

This, then, is all that is needed to reconstruct the critical cube data for a single isosurface, 

because it is this set of intersection points that form all of the vertices of the triangles used to 

approximate the surface (Figure 4). 

  
Figure 4. Triangles connect the surface-grid intersections. 



The actual Java code for this value-to-character conversion is shown below: 

 
  char jvxlFractionAsCharacter(float fraction, int base, int range) { 
    if (fraction > 0.9999f) 
      fraction = 0.9999f; 
    else if (Float.isNaN(fraction)) 
      fraction = 1.0001f; 
    int ich = (int) (fraction * range + base); 
    if (ich < base) 
      return (char) base; 
    if (ich == 92) 
      return 33; // \ --> ! 
    return (char) ich; 
  } 

 

And its reverse, character-to-value, where fracOffset is 0.5 to center the returned fraction among 

the possible values assignable to that character: 

 
  float jvxlFractionFromCharacter(int ich, int base, int range, float fracOffset) { 
  if (ich == base + range) 
      return Float.NaN; 
    if (ich < base) 
      ich = 92; // ! --> \ 
    float fraction = (ich - base + fracOffset) / range; 
    if (fraction < 0f) 
      return 0f; 
    if (fraction > 1f) 
      return 0.999999f; 
    return fraction; 
  } 

 

  

 

Color Mapping Data 

 

Color-mapped isosurfaces are constructed in exactly the same 

way, but in this case, each surface point – defined by the 

crossing of an edge by the surface – is assigned a numerical 

value based on some other criterion, typically data from 

another CUBE file, but also possibly charge data or other data 

easily determined from the atomic positions or data added by 

the user. Coloring is based on a particular scheme or “pallete” 

which simply requires one more “fractional” number – the 

fraction of the distance from “red” to “blue”. This is encoded 

as before; Jmol uses a 35-color “roygbiv” rainbow for its 

rendering, so we encode as before, this time with a color base 

(CB) of 35 and a color range (CR) of 35 as well. 

 

Planar Slices 

 

Planar data are particularly amenable to compression, because 

we do not require any surface or edge data – the function 

defining the plane: 

 

   ax + by + cz + d = 0 

 

is sufficient. In the planar version of the JVXL format we 

simply set both NP and NE to -1 and add the four planar 

parameters PA, PB, PC, and PD. But, in addition, since in this 

case there are typically substantial runs of the same color, we 



apply a bit of simple compression. Specifically, any run of the same character “X” that is longer 

than 4 digits is represented by “X~n<space>”, where “n” is the number of digits removed from 

the run. So, for example,  

 
EEEEEEB4,'$##################################%',5DEEEEEEE 
 

is shortened to: 

 
E~5 B4,'$#~33 %',5DE~6  

 

This allows a reduction in file size by a factor of 200-600 over delivering the raw CUBE files. 

(The tilde character is available for this use because it is ASCII 126, outside the 25-125 range 

utilized by Jmol for its character encoding.) 

 

 

Solvent-Accessible and Solvent-Excluded Surfaces 

 

Both solvent-accessible and solvent-excluded surfaces (or “molecular” surfaces) can be 

generated by Jmol as isosurfaces and then saved and transmitted as JVXL files. These terms have 

been described by Connolly. [http://www.netsci.org/Science/Compchem/feature14e.html] Jmol 

uses a method that is not described in that article. The basic idea is to create a three-dimensional 

grid of data points – precisely as in CUBE files – that represents the solvent surface. This is 

accomplished simply by defining a grid and then determining a value for each grid point for 

which 0 represents “on the surface”. Details of this algorithm are not described here. 

 

 

Rendering of Biomolecule Cavities 
 

The method of creating a grid of points for which 0 represents the surface to render also lends 

itself to the rendering of “cavities” – pockets or voids in a protein that might represent an active 

binding site. The algorithm Jmol uses for a general solvent surface assigns a positive value to 

points outside the surface. These values are the minimum distance to the surface. If a set of 

spheres is generated, each of which is centered on the grid points and having the specified radius, 

that set of “atoms” can be used in a second surface-finding pass that defines precisely the 

boundaries of all cavities.   

 

Writing JVXL Files using Jmol 11.1 

 

Creation of a JVXL file is most easily accomplished using the stand-alone Jmol Java application, 

version 11.1 or later. Once a dataset is visualized using the ISOSURFACE command from the 

console, the following command creates the JVXL file: 

 
write ISOSURFACE “myfile.jvxl” 
 

Alternatively, the applet can be used to create JVXL files from a browser. Clicking on the applet 

“Jmol” frank brings up a menu from which one can bring up a console. The command to display 

the contents of the JVXL equivalent of a displayed isosurface is simply: 

 
show ISOSURFACE 
 

The JVXL data appear in the console output window, from where they can be highlighted and 

clipped into the system clipboard by the user. 



 

Results and Compression Ratios 

 

Compression ratios on the order of 400-600 are typical for orbitals, electron density, and 

electrostatic potential maps. If only a planar slice is desired, compression can be much higher – 

on the order of 2000 – 6000 : 1. This, of course, leaves out any possibility of real-time generation 

of additional surfaces; for that, the CUBE file is necessary. But for general use – depicting 

molecular orbitals and simple mapped surfaces –  JVXL files should suffice. Shown in Table 1 

and Figures 5 and 6 are several comparisons.
 4
  

 

 

Table 1. Comparison of various surface types delivered as CUBE or JVXL files. 

Compound Surface Type CUBE 

Size/Kb 

JVXL 

Size/Kb 

Byte Ratio 

CH3Cl Electron density 1813 3.5 518 

CH3Cl Electrostatic Potential 1813 4.8 377 

CH3Cl ESP-mapped electron density 3626 6.1 594 

ethene Molecular Orbital 1015 5.5 184 

1crn Solvent-accessible 

(23 x 23 x 23) 

160 3.7 43 

1crn Molecular 

(63 x 63 x 63) 

3250 32.1 100 
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Figure 5. Top: electron density isosurface; middle: electrostatic potential isosurface; bottom: 

electrostatic potential mapped onto the electron density isosurface. CUBE file (left, 3.7 Mb), and 

JVXL file (right, 6 Kb top and middle; 7 Kb bottom).  



                                                                                                                                                             

 
 

Figure 6. On the left, a 6.7 Mb acrolein CUBE file; on the right, the 2.7 Kb JVXL extraction of 

this particular plane of data, amounting to a 2400:1 reduction in file size. (They are for all 

practical purposes identical.) 
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Document modifications: 4/21/2009 specification for looping through voxels was inverted. 

 


