
The Jmol Voxel (JVXL) File Format

Robert M. Hanson, Department of Chemistry, St. Olaf College, Northfield, Minnesota, USA

55057, hansonr@stolaf.edu, http://www.stolaf.edu/people/hansonr

May 25, 2006

(revised 4/21/2009)

see http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/isosurface.htm

Abstract

A format specification for the Jmol voxel (JVXL) file format is proposed. The purpose of the

JVXL file format is to provide a mechanism for the efficient delivery of molecular surface data

(orbitals, electron density plots, electrostatic potential maps, etc.) from a web server to a client

page in a compact manner. The format was designed to be used specifically with the open-source

Jmol molecular viewing and analysis applet (http://jmol.sourceforge.net), but the format has

general utility anywhere a Gaussian CUBE file might be employed. Whereas typical CUBE files

are on the order of 1-10 Mb in size, the derived JVXL files are 400-1000 times smaller, on the

order of 5-10Kb. The Jmol applet can read and write the JVXL file format, and currently it is the

only application that can be used to create JVXL files.

Background

Computed molecular orbitals and electron density data are typically stored in Gaussian CUBE

file format [http://local.wasp.uwa.edu.au/~pbourke/dataformats/cube/]. Electrostatic potential

map data for biomolecules can be produced by the open source APBS (Adaptive Poisson-

Boltzmann Solver) program [http://apbs.sourceforge.net/], which saves the data in a “multigrid

DX” format similar to Gaussian’s CUBE format. These files, even for small molecules, tend to

be inconveniently large in the context of the web – on the order of 1-10 Mb even for relatively

small molecules such as acrolein
1
 and benzene

2
 and much larger for proteins. The core data

section of a CUBE file consists of a list of numerical values, each representing the value of some

particular molecular quantity at a specific x,y,z position within a molecular space. The number of

data points involved depends upon the resolution of the grid and the size of the space. It is not

uncommon for CUBE files to hold from 10,000 to 500,000 data points, each requiring 13 bytes

of storage space. CUBE files may contain any number of such lists. The size of cube files has

proven a formidable deterrent to the real-time display of three-dimensional models of molecular

surfaces on the web.

The JVXL Solution

Whereas the CUBE file contains the complete data set associated with a molecular parameter,

typical use of CUBE file data is to display only a two-dimensional surface – the 95% probability

surface for a molecular orbital, or the electrostatic potential of a molecule mapped onto an

electron density surface. It is this characteristic use of the CUBE file that makes the JVXL

format of great utility, for the JVXL file contains all the information needed to depict a finite,

predetermined number of surfaces derived from the data stored in one or more CUBE files. This

information turns out to be representable in far fewer bytes than the complete data set. The trade-

off is that JVXL files do not contain the entire data set – they cannot be used to regenerate

CUBE files, and they cannot be used to display any more surfaces than the designer has loaded

them with in the first place. Nonetheless, since the typical use of CUBE files is to present one or

possibly a small number of surface representations, this is not in general a problem.

LEFT:

A map of the electrostatic potential of 1dry.pdb

onto the van der Waals-radius surface.

(65K JVXL file 1dry-mep.jvxl)

BELOW:

Cavities in 3dfr.pdb rendered using Jmol; file

sizes 27K (left), and 37K (right).

General JVXL File Formats

The JVXL file consists of two sections, a header section, and a data section, consisting of one or

more surface descriptions. The header section is identical to the CUBE file header section,

though freer in format. (Indeed, Jmol reads JVXL files with the same reader it uses for CUBE

files in terms of reading atom coordinates.) The header section consists of the following subsets:

TABLE 1. JVXL (CUBE) FILE HEADER SECTION

Lines 1 and 2:

comments

 Title Card Required potential=scf

 Electrostatic potential from Total SCF Density

Line 3: a negative

number (-N)

representing the

number of atoms

followed by the origin

of the “voxel space”,

(x,y,z). N must be

negative; it cannot be

zero. Units are Bohr

unless the optional

keyword

ANGSTROMS (with

or without the

brackets) is also on

that line.

 -5 -8.140940 -8.140940 -8.643459 [ANGSTROMS]

 -N x y z

Lines 4: the number of

data points along the

“X” coordinate (NX),

as defined by the

vector (x,y,z).

 50 0.333333 0.000000 0.000000

 NX x y z

Line 5: same for Y 50 0.000000 0.333333 0.000000

Line 6: same for Z 55 0.000000 0.000000 0.333333

Lines (6+1) – (6+N):

Atomic number in

integer and real format

along with Cartesian

coordinates of each of

the N atoms. There

must be at least one

atom.

 6 6.000000 0.000000 0.000000 -2.130707
 1 1.000000 0.000000 1.932284 -2.775380
 1 1.000000 1.673407 -0.966142 -2.775380
 1 1.000000 -1.673407 -0.966142 -2.775380
 17 17.000000 0.000000 0.000000 1.241787

Line 7 + N:

A negative number

(-NS) indicating the

number of surface

specifications,

followed by four

encoding numbers

-1 35 90 35 90 Jmol voxel format version 0.9b

-NS EB ER CB CR

(EB, ER, CB, CR)

described below, and

any additional text,

possibly indicating the

file format version

It is not important that all atoms in a molecular system be represented here. The only significant

difference between the JVXL and CUBE headers is that for the JVXL file at least one atom must

be indicated, because a negative number for the number of atoms in a cube file indicates that the

(7+N)th header line will be present. The negative number on that (7+N)th line distinguishes this

file from a Gaussian CUBE file, where a positive number indicates the number of data set lists

that follow.

In a CUBE file what now follows is an (NX x NY x NZ)-long list of numbers. In a JXVL file

what follows is a data section, consisting of (NS) surface descriptions. The four numbers EB,

ER, CB, and CR indicate how edge and color data were encoded into ASCII character format.

Currently, these numbers are fixed by the Jmol software and are not user-adjustable.

Surface descriptions are of several types:

• Unmapped curved isosurfaces (Table 2).

• Color-Mapped isosurfaces (Table 3).

• Color-Contoured planar slices through CUBE data (Table 4).

Unmapped curved isosurfaces (Table 2). These surfaces are either

derived from CUBE data by specifying a cutoff value or derived

from the model itself in the form of a “solvent excluded surface” or

“solvent-accessible surface”. In Jmol the script command is simply:

 isosurface myname 0.05 “myfile.cube”

or

 set solvent 1.4; isosurface solvent

or using a JVXL file, where the cutoff has been predetermined:

 isosurface myname “myfile.jvxl”

Color-Mapped isosurfaces (Table 3). These are isosurfaces that

have been overlaid with data from a second CUBE file. The Jmol

script command allows for the optional designation of a range over

which the colors red to blue should be applied:

 isosurface myname 0.05 “myfile.cube”

 color absolute 0.0 0.2 “mydata.cube”

The JVXL equivalent requires nothing more than for an unmapped

isosurface, since a JVXL file includes the cutoff and coloring ranges

as predetermined values:

 isosurface myname “myfile.jvxl”

The JVXL format also allows for a “high precision” color compression that takes up about twice

as much space but allows for remapping of the colors by the end user. See the note under high

precision color, below.

Color-Contoured planar slices through CUBE data (Table 4).
These are color-contoured surfaces created by first generating the

intersection points of a plane with a voxel grid, then using those

points as a basis for a marching squares (2D) contouring of the

planar grid of data.

TABLE 2. JVXL FILE SURFACE SPECIFICATION (nonplanar surface)

Variable number of blank

lines or comments

comments begin with a # sign; blank lines are ignored

any number of such lines are allowed

Surface description line:

the cutoff used for the

computation of the surface

(CO, for information

only), the number of bytes

of grid point data (NP),

the number of bytes of

edge data (NE), and a flag

(NC) indicating whether

colors data are present

(NC=NE) or not (NC=-1)

anything else on this line

is informational only

0.02 6457 8076 -1 compressionRatio=462.06357
 CO NP NE NC

One or more lines of

integer surface voxel

bitmap data (described

below)

 115922 2 6333 4 91 6 90 7 88 8 88 8 89 6 91 . . .

One or more lines of

ASCII-encoded edge

fraction data (described

below)

3_+I6B3qPV4LVSwC{/K'_+G]fcUy6Il<3; . . .

One or more lines of

ASCII-encoded color

mapping data (optionally

compressed; described

below)

7777889989:;;::<==:<=###$####$$%22223333###$. . .

TABLE 3. JVXL FILE SURFACE SPECIFICATION (planar surface)

Variable number of blank

lines or comments

comments begin with a # sign; blank lines are ignored

any number of such lines are allowed

Surface description line

with plane indicated by -1

in both NP and NE. Four

additional parameters (PA,

PB, PC, and PD) defining

the plane are required.

0.0 -1 -1 2500 0.0 0.0 1.0 0.0
 CO NP NE NC PA PB PC PD

One or more lines of

ASCII-encoded and

compressed color

mapping data.

#~871 $~6 #~40 $$%&'''&%$#~38 $%')+,,+) . . .

JVXL Surface Data

To understand what is present in the three surface data fields, one must understand the essentials

of the isosurface method. In this method, the space surrounding a surface is considered to be a

set of points laid out in a rectilinear or parallelepiped grid. (The format does not require that the

axes be orthogonal, but typically they are.) An isosurface is defined as a surface through these

points where a given parameter has a constant value (Figure 1).

Figure 1. An isosurface surrounded by a 5 x 2 x 3 grid of data points. The key point is that much

of the data points are unnecessary.

The first thing to understand is that the only significant information we require are the

approximate positions where the surface cuts the lines between the data points. It will be these

intersection points that are then turned into a series of triangles for surface rendering. Thus, no

information in volumes V11, V21, V14, or V24 are required. In fact, what we need to do is focus

on the edges. We need only consider the edges where one end is on one side of the surface and

the other end is on the other side – edges cut by the surface. If we can identify which edges these

are and where along each edge the surface cuts, we have all we need. Figure 2 shows a close-up

of one such surface.

Figure 2. Two slices through a surface showing the relationship between the surface points used

for triangulation (green) at intersections of the surface with edges of the grid.

The first set of surface data in a JVXL file maps out which data points are critical for surface

construction – only those that terminate intersecting edges. Some are “inside”, and some are

“outside” the surface. We simply count along in a systematic way. Using the for loop:

 for (int x = 0; x < voxelCountX; x++) {

 for (int y = 0; y < voxelCountY; y++) {

 for (int z = 0; z < voxelCountZ; z++) {

we run through all the “voxels” and determine whether the value at each is closer to 0 than a

predetermined cutoff value (“outside”) or further from 0 (“inside”). We simply list the number of

voxels found sequentially on each side: 115922 outside, 2 inside, 6333 outside, 4 inside…

forming a relatively compact yet readable surface voxel bitmap.

Edge Fraction Data

The surface voxel bitmap data is enough information to be able to reconstruct which edges are

the “critical” edges. Having done that, we go back through the voxels using the marching cube

algorithm,
3
 this time running through each critical edge and estimating the position of the

intersection of the surface with the edge. The edges are numbered and gone through sequentially

from highest numbered to lowest (11 to 0, Figure 3) using a clever method that never checks any

edge twice.

Figure 3. Edge numbering.

Only edges that have one end inside and one end outside are recorded. Based on the two values

for the property at each end of the edge and the known cutoff value, a fraction is determined by

linear interpolation:

 fraction = (cutoff - valueA) / (valueB - valueA);

It is this set of critical-edge fractions, then,

that is encoded in the form of the edge

fraction data. Encoding is carried out

simply by determining the ASCII

character that is that fraction of the way

from the edge base character (EB, 35, ‘#’)

to an end character (125, ‘}’) along a

range of ASCII values (ER, 90). Since the

fraction is rounded down to the nearest

integer, the actual range is from 0 to

ER – 1. The end character itself is not

represented in this series. (A point at the

“end” of one edge would be at the

“beginning” of another and is not recorded

twice.) The end character itself (125, ‘}’)

is reserved for “no value,” thus allowing

for surface fragments. (In Jmol the value

at that position in the grid is recorded as

“Not-A-Number”, Float.NaN.)

The only hitch in this scheme is that the backslash character, ‘\’, 92, is in this range. To ensure

that backslash is not encoded, because it often has special meaning in strings in many

programming languages, we encode backslash as an exclamation point (‘!’, 33). The only other

character that might give problems is double quote, but it is outside this range (ASCII 34).

This, then, is all that is needed to reconstruct the critical cube data for a single isosurface,

because it is this set of intersection points that form all of the vertices of the triangles used to

approximate the surface (Figure 4).

Figure 4. Triangles connect the surface-grid intersections.

The actual Java code for this value-to-character conversion is shown below:

 char jvxlFractionAsCharacter(float fraction, int base, int range) {
 if (fraction > 0.9999f)
 fraction = 0.9999f;
 else if (Float.isNaN(fraction))
 fraction = 1.0001f;
 int ich = (int) (fraction * range + base);
 if (ich < base)
 return (char) base;
 if (ich == 92)
 return 33; // \ --> !
 return (char) ich;
 }

And its reverse, character-to-value, where fracOffset is 0.5 to center the returned fraction among

the possible values assignable to that character:

 float jvxlFractionFromCharacter(int ich, int base, int range, float fracOffset) {
 if (ich == base + range)
 return Float.NaN;
 if (ich < base)
 ich = 92; // ! --> \
 float fraction = (ich - base + fracOffset) / range;
 if (fraction < 0f)
 return 0f;
 if (fraction > 1f)
 return 0.999999f;
 return fraction;
 }

Color Mapping Data

Color-mapped isosurfaces are constructed in exactly the same

way, but in this case, each surface point – defined by the

crossing of an edge by the surface – is assigned a numerical

value based on some other criterion, typically data from

another CUBE file, but also possibly charge data or other data

easily determined from the atomic positions or data added by

the user. Coloring is based on a particular scheme or “pallete”

which simply requires one more “fractional” number – the

fraction of the distance from “red” to “blue”. This is encoded

as before; Jmol uses a 35-color “roygbiv” rainbow for its

rendering, so we encode as before, this time with a color base

(CB) of 35 and a color range (CR) of 35 as well.

Planar Slices

Planar data are particularly amenable to compression, because

we do not require any surface or edge data – the function

defining the plane:

 ax + by + cz + d = 0

is sufficient. In the planar version of the JVXL format we

simply set both NP and NE to -1 and add the four planar

parameters PA, PB, PC, and PD. But, in addition, since in this

case there are typically substantial runs of the same color, we

apply a bit of simple compression. Specifically, any run of the same character “X” that is longer

than 4 digits is represented by “X~n<space>”, where “n” is the number of digits removed from

the run. So, for example,

EEEEEEB4,'$##################################%',5DEEEEEEE

is shortened to:

E~5 B4,'$#~33 %',5DE~6

This allows a reduction in file size by a factor of 200-600 over delivering the raw CUBE files.

(The tilde character is available for this use because it is ASCII 126, outside the 25-125 range

utilized by Jmol for its character encoding.)

Solvent-Accessible and Solvent-Excluded Surfaces

Both solvent-accessible and solvent-excluded surfaces (or “molecular” surfaces) can be

generated by Jmol as isosurfaces and then saved and transmitted as JVXL files. These terms have

been described by Connolly. [http://www.netsci.org/Science/Compchem/feature14e.html] Jmol

uses a method that is not described in that article. The basic idea is to create a three-dimensional

grid of data points – precisely as in CUBE files – that represents the solvent surface. This is

accomplished simply by defining a grid and then determining a value for each grid point for

which 0 represents “on the surface”. Details of this algorithm are not described here.

Rendering of Biomolecule Cavities

The method of creating a grid of points for which 0 represents the surface to render also lends

itself to the rendering of “cavities” – pockets or voids in a protein that might represent an active

binding site. The algorithm Jmol uses for a general solvent surface assigns a positive value to

points outside the surface. These values are the minimum distance to the surface. If a set of

spheres is generated, each of which is centered on the grid points and having the specified radius,

that set of “atoms” can be used in a second surface-finding pass that defines precisely the

boundaries of all cavities.

Writing JVXL Files using Jmol 11.1

Creation of a JVXL file is most easily accomplished using the stand-alone Jmol Java application,

version 11.1 or later. Once a dataset is visualized using the ISOSURFACE command from the

console, the following command creates the JVXL file:

write ISOSURFACE “myfile.jvxl”

Alternatively, the applet can be used to create JVXL files from a browser. Clicking on the applet

“Jmol” frank brings up a menu from which one can bring up a console. The command to display

the contents of the JVXL equivalent of a displayed isosurface is simply:

show ISOSURFACE

The JVXL data appear in the console output window, from where they can be highlighted and

clipped into the system clipboard by the user.

Results and Compression Ratios

Compression ratios on the order of 400-600 are typical for orbitals, electron density, and

electrostatic potential maps. If only a planar slice is desired, compression can be much higher –

on the order of 2000 – 6000 : 1. This, of course, leaves out any possibility of real-time generation

of additional surfaces; for that, the CUBE file is necessary. But for general use – depicting

molecular orbitals and simple mapped surfaces – JVXL files should suffice. Shown in Table 1

and Figures 5 and 6 are several comparisons.
 4

Table 1. Comparison of various surface types delivered as CUBE or JVXL files.

Compound Surface Type CUBE

Size/Kb

JVXL

Size/Kb

Byte Ratio

CH3Cl Electron density 1813 3.5 518

CH3Cl Electrostatic Potential 1813 4.8 377

CH3Cl ESP-mapped electron density 3626 6.1 594

ethene Molecular Orbital 1015 5.5 184

1crn Solvent-accessible

(23 x 23 x 23)

160 3.7 43

1crn Molecular

(63 x 63 x 63)

3250 32.1 100

DOCUMENT HISTORY:

- original document 5/25/06

- figure 3 corrected; caption enhanced, reference 4 added 5/25/06

- 5/26/06 – added figures and plane color compression description.

- Revised June 15, 2006

- Revised March 20, 2007

- Table added June 28, 2007

Figure 5. Top: electron density isosurface; middle: electrostatic potential isosurface; bottom:

electrostatic potential mapped onto the electron density isosurface. CUBE file (left, 3.7 Mb), and

JVXL file (right, 6 Kb top and middle; 7 Kb bottom).

Figure 6. On the left, a 6.7 Mb acrolein CUBE file; on the right, the 2.7 Kb JVXL extraction of

this particular plane of data, amounting to a 2400:1 reduction in file size. (They are for all

practical purposes identical.)

References

1
 http://educ.gaussian.com/visual/Diff/Files/acrolein1_gs.cube (6.7Mb uncompressed).

2
 http://svn.sourceforge.net/viewcvs.cgi/*checkout*/jmol/trunk/Jmol-datafiles/cube/benzene-homo.cub.gz (568Kb

 gzip compressed, 1.6Mb uncompressed).
3
 http://www.exaflop.org/docs/marchcubes/ (last accessed 5/26/06).

4
 Clockwise from the top left (Jmol script after loading given in parentheses); see

 http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/isosurface.htm,

 http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl-density.cub.gz (isosurface 0.05 “”),

 http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl.jvxl (isosurface “” 1),

http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl.jvxl (isosurface “” 2),

http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl-map.jvxl (isosurface “”),

http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl-density.cub.gz

 (isosurface “” color “http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl-esp.cub.gz”)

http://www.stolaf.edu/academics/chemapps/jmol/docs/examples-11/data/ch3cl-esp.cub.gz (isosurface 0.05 “”)

Document modifications: 4/21/2009 specification for looping through voxels was inverted.

