Zoltán Buczolich,^{*} Department of Analysis, Eötvös Loránd University, Pázmány Péter Sétány 1/c, 1117 Budapest, Hungary. email: buczo@cs.elte.hu

HÖLDER SPECTRUM OF FUNCTIONS MONOTONE IN SEVERAL VARIABLES

This talk was about the results of a joint paper with Stéphane Seuret. Details and proofs of the results mentioned in this abstract are in [5].

Let d be an integer greater than one. A function $f:[0,1]^d \to \mathbb{R}$ is continuous monotone increasing in several variables (in short: MISV) if for all $i \in \{1,...,d\}$, the functions $f^{(i)}(t) = f(x_1,...,x_{i-1},t,x_{i+1},...,x_d)$ are continuous monotone increasing. We use the notation $\mathcal{M}^d = \{f \in C([0,1]^d) : f \text{ MISV}\}$. The space \mathcal{M}^d is a separable complete metric space when equipped with the supremum, L^{∞} norm.

The multifractal properties of functions in \mathcal{M}^1 were studied in [3]. In this paper, we deal with the higher dimensional case. This is also a continuation of [4] where multifractal properties of typical/generic Borel measures on $[0, 1]^d$ were investigated.

Definition 1. Let $f \in L^{\infty}([0,1]^d)$. For $h \ge 0$ and $x \in [0,1]^d$, the function f belongs to C_x^h if there are a polynomial P of degree less than [h] and a constant C such that, for x' close to x, $|f(x') - P(x' - x)| \le C|x' - x|^h$. The pointwise Hölder exponent of f at x is $h_f(x) = \sup\{h \ge 0 : f \in C_x^h\}$.

The singularity spectrum of f is defined by $d_f(h) = \dim_H E_f^h$, where $E_f^h = \{x : h_f(x) = h\}$.

We will also use the sets $E_f^{h,\leq} = \{x : h_f(x) \leq h\} \supset E_f^h$.

Our main results are the following theorems.

Mathematical Reviews subject classification: Primary: 28A80; Secondary: 26A16, 26A48 Key words: singularity spectrum, typical/generic property, Hölder exponent, multi-

fractal formalism *Research supported by the Hungarian National Foundation for Scientific research K075242.

Theorem 2. For all $f \in \mathcal{M}^d$ and $h \ge 0$, we have

$$\dim_H E_f^{h,\leq} \le \min(d-1+h,d). \tag{1}$$

In particular, $d_f(h) = \dim_H(E_f^h) \le \min(d-1+h, d).$

Theorem 3. There exists a dense G_{δ} set $\mathcal{R} \subset \mathcal{M}^d$ such that for all $f \in \mathcal{R}$ we have $d_f(h) = d - 1 + h$ for all $h \in [0, 1]$. For these functions, for every h > 1 the set E_f^h is empty.

In the second part of our paper we study level sets of MISV functions. We define for every $a \in \mathbb{R}$ the level set $L_f(a)$ by $L_f(a) = \{x \in [0,1]^d : f(x) = a\}$. We prove the following.

Theorem 4. There exists a dense G_{δ} subset \mathcal{L} in \mathcal{M}^d such that for all $f \in \mathcal{L}$

the following holds. There exist a set $X_f \subset [0,1]^d$ and a set $A_f \subset (f(0,...,0), f(1,...,1)) =$

- (m_f, M_f) satisfying:
 - (i) $\dim_H X_f = d 1$, $\dim_H A_f = 0$,
- (ii) for every $a \in (m_f, M_f)$, there is at most one point of $L_f(a)$ which does not belong to X_f (in other words, $L_f(a) \cap ([0, 1]^d \setminus X_f)$ contains at most one point).
- (iii) for every $a \in (m_f, M_f) \setminus A_f$, $L_f(a) \subset X_f$.

The level sets of generic continuous MISV functions are quite simple compared to the level sets of generic continuous functions (see for example [2]).

Set $\mathbb{R}^d_+ = \{(l_1, ..., l_d) : \forall i, l_i \geq 0\}$ and $\mathbb{R}^d_- = \{(l_1, ..., l_d) : \forall i, l_i \leq 0\}$. It is well-known that generic continuous functions on [0, 1] are nowhere monotone (see for example [1], Chapter 10). MISV functions are obviously monotone increasing along lines $\underline{l}t + \underline{b} = (l_1t + b_1, ..., l_dt + b_d), (t \in \mathbb{R})$ if $\underline{l} \in \mathbb{R}^d_+$ and monotone decreasing if $\underline{l} \in \mathbb{R}^d_-$. For the generic functions in \mathcal{M}^d one cannot say much more:

Theorem 5. There exists a dense G_{δ} subset \mathcal{G} in \mathcal{M}^d such that for any $f \in \mathcal{G}$, if $\underline{l} = (l_1, ..., l_d) \notin \mathbb{R}^d_+ \cup \mathbb{R}^d_-$ and $\underline{b} = (b_1, ..., b_d) \in \mathbb{R}^d$, then the function $g_{\underline{l},\underline{b}}(t) = f(\underline{l}t + \underline{b}), t \in \mathbb{R}$ is monotone on no non-empty open subinterval on its domain.

References

- [1] A. M. Bruckner, J. B. Bruckner and B. S. Thomson, *Real Analysis*, Prentice-Hall International, London, (2008).
- [2] Z. Buczolich, U. B. Darji, Pseudoarcs, pseudocircles, Lakes of Wada and generic maps on S², Topology and its Applications 150 (1-3), 223-254, (2005).
- [3] Z. Buczolich, J. Nagy, Hölder spectrum of typical monotone continuous functions, Real Anal. Exchange 26, 133–156, 2000/01.
- [4] Z. Buczolich, S. Seuret, Typical Borel measures on [0,1]^d satisfy a multifractal formalism, Nonlinearity, Vol. 23(11) 2010.
- [5] Z. Buczolich, S. Seuret, *Hölder spectrum of functions monotone in several variables*, J. Math. Anal. Appl. to appear.