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ON SOME PROPERTIES OF VAN KOCH
CURVES

Our research goes back to the so-called problem of AC-removability of
quasiconformal curves. The solution to that problem was furnished making
use of Van Koch curves which turned out to be quasiconformal but not AC-
removable.

The result was based on the investigation of integrals of type

T (f)(z) =

∫
Γ

f(ζ)dµ(ζ)

ζ − z
, z ∈ C (1)

where Γ ⊂ C is a Van Koch curve, µ a finite measure on Γ, and f : Γ→ C is
essentially bounded.

Definition 1. Let Ω be an open subset of C. A set E ⊂ Ω, closed in Ω, is
called AC-removable in Ω if each continuous function f : Ω → C analytic in
Ω \ E, is also analytic in Ω. In our context Ω = C.

A curve C ⊂ C is said to be quasiconformal if it is a quasiconformal image
of a closed interval.

1. A special family of Van Koch’s curves

We consider the family of Van Koch curves (see [1] for details and further
references).

{Γθ : θ ∈ (0, π/4)} (2)
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obtained from the triangle ∆0
1 with vertices 0, 1, (1 + i tan θ)/2, consecutively

deleting some special sequence of isosceles open triangles. In the first step
we delete from ∆0

1 (the triangle of rank zero) the open triangle1 with vertices
λ2, 1 − λ2, (1 + i tan θ)/2, where λ = (2 cos θ)−1. We get two closed triangles
∆1

1,∆
1
2 of rank one, each one being similar to ∆0

1. In the nth step, we obtain
2n equal triangles ∆n

k , of rank n, similar to ∆0
1, diam∆n

k = λn. By definition,

Γ = Γθ =

∞⋂
n=1

2n⋃
k=1

∆n
k . (3)

2. The natural parametrization of Van Koch’s curves

For each fixed θ ∈ (0, π/4) there exist two sequences {Ln}, {ϕn}, corre-
sponding to the representation (3). Elements of the first sequence are polyg-
onal arcs

Ln =

2n⋃
k=1

snk , (4)

where snk = [znk−1, z
n
k ] is the line segment with endpoints znk−1, z

n
k (zn0 =

0, zn2n = 1) which is the side of ∆n
k lying opposite the angle π − 2θ. Each

snk is oriented from znk−1 to znk . We let L0 denote the segment [0, 1], so we have
L0 = s0

1 = [0, 1].
The second sequence consists of the homeomorphisms ϕn : [0, 1] → Ln

with the properties:
(i) ϕn(0) = 0, ϕn(1) = 1;
(ii) for each k, 1 ≤ k ≤ 2n, the restriction ϕn|Ink , where Ink = [(k−1)2−n, k2−n],
is an affine mapping of Ink onto snk , ϕn(k2−n) = znk for k ∈ {0, 1, . . . , 2n}. Thus
ϕn is a parametrization of the oriented arc Ln.

Theorem 1. (i) For each θ ∈ (0, π/4) there exists a uniform limit ϕ = limϕn
which is a homeomorphism of [0, 1] onto Γθ.

(ii) The homeomorphism ϕ : [0, 1]→ Γθ satisfies bilateral Hölder’s inequal-
ity

A|t1 − t2|log2 2 cos θ ≤ |ϕ(t1)− ϕ(t2)| ≤ 4|t1 − t2|log2 2 cos θ (5)

where A = A(θ).

1Correction: in [1], Section 1, right after formula (3), the words: ”similar to the initial
triangle ∆0

1” were written accidentally and, of course, should be deleted.
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We call ϕ(= ϕθ) the natural parametrization of Γ = Γθ (for the sake of
simplicity, we often omit θ).

The bilateral inequality (5) of Theorem 1 implies that Γ satisfies the so-
called Ahlfors condition (see [2], [3]) which is important in the proof of

Theorem 2. (a) Each Γ = Γθ, 0 < θ < π/4, is a quasiconformal curve.
(b) The Hausdorff dimension of Γθ equals 1/log22cosθ
(c) None of Γθ, 0 < θ < π/4, is AC-removable.

3. A Continuous Cauchy-type Integral

We prove the existence of the integral (1) in the Lebesgue sense where µ
is the image of Lebesgue measure from [0, 1] onto Γ via ϕ.

We have, in particular, µΓnk = 2−n for each n ∈ {0}∪N and k = 1, . . . , 2n,
where Γnk = Γ ∩∆n

k . For n = 0 we have Γ0
1 = Γ ∩∆0

1 = Γ and µΓ = 1.

In what follows, we consider the space L∞(Γ) = L∞(Γ, µ) of µ-measurable
essentially bounded functions f : Γ → C. We equip L∞(Γ) with its natural
essential sup-norm ||f ||∞.

Given any f ∈ L∞(Γ), we let for each z ∈ C

T (f)(z) =

∫
Γ

f(ζ)dµ(ζ)

ζ − z
. (6)

Theorem 3. For each f ∈ L∞(Γ) the function C 3 z 7→ T (f)(z) is analytic
in C \ Γ, continuous in C and vanishing at ∞.

4. Linear operator T : L∞(Γ)→ AC(Γ)

By AC(Γ) we denote the space of functions f : C → C continuous in C,
analytic in C \ Γ and vanishing at ∞. We equip AC(Γ) with the usual sup
norm.

The mapping T : L∞(Γ) → AC(Γ) defined by (6) is a well-posed linear
operator.

Theorem 4. (i) kerT = {0}.
(ii) T is a compact operator.

5. Logarithmic potential defined for Van Koch curves

Given an f ∈ L∞(Γ), we let for each z ∈ C

P (f)(z) =

∫
Γ

f(ζ) ln |ζ − z|dµ(ζ). (7)

and call P (f) a logarithmic potential with density f.
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Theorem 5. For each f ∈ L∞(Γ) the partial derivatives Px = ∂P
∂x , Py = ∂P

∂y

are continuous in C [4].
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