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ON SOME PROPERTIES OF VAN KOCH
CURVES

Our research goes back to the so-called problem of AC-removability of
quasiconformal curves. The solution to that problem was furnished making
use of Van Koch curves which turned out to be quasiconformal but not AC-
removable.

The result was based on the investigation of integrals of type

1(7)() = [P ee 1)

where I' C C is a Van Koch curve, u a finite measure on I', and f : T' — C is
essentially bounded.

Definition 1. Let Q be an open subset of C. A set E C €, closed in ), is
called AC-removable in Q if each continuous function f : Q — C analytic in
Q\ E, is also analytic in Q. In our context 2 = C.

A curve C C C is said to be quasiconformal if it is a quasiconformal image
of a closed interval.

1. A special family of Van Koch’s curves

We consider the family of Van Koch curves (see [1] for details and further
references).

{Ty:0€(0,7/4)} (2)
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obtained from the triangle AY with vertices 0,1, (1 + i tan 6)/2, consecutively
deleting some special sequence of isosceles open triangles. In the first step
we delete from A (the triangle of rank zero) the open triangle! with vertices
A2, 1= A% (1 +itan®)/2, where A = (2cosf)~1. We get two closed triangles
Al, A} of rank one, each one being similar to AY. In the n*" step, we obtain
2" equal triangles A7, of rank n, similar to A?, diamA? = A". By definition,

co 2™

r=Ty=)JAr (3)

n=1k=1

2. The natural parametrization of Van Koch’s curves

For each fixed 0 € (0,7/4) there exist two sequences {L"}, {y,}, corre-
sponding to the representation (3). Elements of the first sequence are polyg-
onal arcs

-
1=t (4)
k=1

where s} = [2}_,,2] is the line segment with endpoints z}}_,,27 (2§ =
0, 25 = 1) which is the side of A} lying opposite the angle = — 26. Each
s} is oriented from 2}, to z}'. We let L? denote the segment [0, 1], so we have
LY =59 =0,1].

The second sequence consists of the homeomorphisms ¢, : [0,1] — L™
with the properties:
(ii) for each k, 1 < k < 2", the restriction ¢, |1}, where I} = [(k—1)27"™, k27 "],
is an affine mapping of I}’ onto s}, ¢, (k27™) = 2} for k € {0,1,...,2"}. Thus
©n is a parametrization of the oriented arc L™.

Theorem 1. (i) For each § € (0,7/4) there exists a uniform limit ¢ = lim ¢,
which is a homeomorphism of [0,1] onto Ty.

(i) The homeomorphism ¢ : [0,1] — T'g satisfies bilateral Hélder’s inequal-
ity

A|t1 o t2|log2200s9 S ‘@(tl) o (p(t2)| S 4“1 o t2|log22cos0 (5)

where A = A(0).

LCorrection: in [1], Section 1, right after formula (3), the words: ”similar to the initial
triangle A(l)” were written accidentally and, of course, should be deleted.
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We call o(= pp) the natural parametrization of I' = T'y (for the sake of
simplicity, we often omit ).

The bilateral inequality (5) of Theorem 1 implies that T" satisfies the so-
called Ahlfors condition (see [2], [3]) which is important in the proof of

Theorem 2. (a) EachT' =Ty, 0 < 8 < 7/4, is a quasiconformal curve.
(b) The Hausdorff dimension of Ty equals 1/loga2cosf
(c) None of Tp, 0 < 0 < /4, is AC-removable.

3. A Continuous Cauchy-type Integral

We prove the existence of the integral (1) in the Lebesgue sense where p
is the image of Lebesgue measure from [0, 1] onto I" via ¢.

We have, in particular, uI'y} = 27" for eachn € {0} UN and k =1,...,2",
where I't =N AR For n =0 we have I'{ =T'NAY =T and ul' = 1.

In what follows, we consider the space L*°(T") = L*°(T', u) of u-measurable
essentially bounded functions f : I' — C. We equip L>(I") with its natural
essential sup-norm || f||so-

Given any f € L*°(I"), we let for each z € C

7(1)(z) = [ LI, ©
r

Theorem 3. For each f € L*™(T') the function C > z — T(f)(2) is analytic
in C\ I, continuous in C and vanishing at co.

4. Linear operator 7 : L>°(T") — AC(T")

By AC(T") we denote the space of functions f : C — C continuous in C,
analytic in C \ T’ and vanishing at co. We equip AC(T") with the usual sup

norm.
The mapping T : L>®(T') — AC(T) defined by (6) is a well-posed linear
operator.

Theorem 4. (i) kerT = {0}.
(i) T is a compact operator.

5. Logarithmic potential defined for Van Koch curves

Given an f € L>(T"), we let for each z € C

waa:3/f«nnmfzumo. (7)

and call P(f) a logarithmic potential with density f.
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Theorem 5. For each f € L>®(I") the partial derivatives Py = (83—1; P, = %
are continuous in C [4].
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