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ON ASYMPTOTIC UNIFORM UPPER
DENSITY IN LOCALLY COMPACT

ABELIAN GROUPS

The notion of uniform asymptotic upper density – a.u.u.d. for short – on
R goes back to the PhD thesis [6] of J.-P- Kahane in 1954, see [5] and [8], and
was used first in Fourier analysis, but later on in many related areas. However,
until recently no extension of the notion was known for locally compact abelian
groups (lca groups) though they form a rather natural framework for many of
the questions treated by means of this density.

The original construction of Kahane for R runs as follows. Let S ⊂ R be
a sequence. If S is just a bounded perturbation of an arithmetic progression,
that is writing S = (sk)∞k=−∞ in increasing order (· · · < sk < sk+1 < . . .
we have sk − L · k = O(1) (k ∈ Z), then we say that S has uniform density
D(S) := 1/L. Now for a general sequence we can define

Defintion 1. If S ⊂ R is a sequence, then

D
#

(S) := inf{D : ∃S′ ⊃ S,D(S′) = D}. (1)

Then Kahane shows that in fact this notion of density can be equivalently
defined as follows.

Defintion 2. If S ⊂ R is a sequence, then

D
#

(S) := lim sup
r→∞

sup
x∈R

#{s ∈ S : |s− x| ≤ r}
2r

. (2)
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Actually, the lim sup is a limit, for the quantity ”essentially decreases”.
Some people (e.g. Fürstenberg) call it Banach density.

A typical area of application is related to investigation of differences: for
if D(S) > 0, then S − S has positive asymptotic density δ(S − S) ≥ D(S).

In Rd (or Zd) one can analogously consider, with a fixed basic set K ⊂ Rd
like e.g. the unit ball or unit cube,

D
#

K(S) := lim sup
r→∞

supx∈Rd #(S ∩ (rK + x))

|rK|
.

Also, non-discrete, but locally Lebesgue-measurable sets arise in the con-
text (in problems of plane geometry e.g.), where the natural density is defined
by means of volume, not cardinality.

So let K ⊂ Rd be e.g. any fat body. Then a.u.u.d of a Lebesgue-measurable
set A ⊂ Rd is defined as

DK(A) := lim sup
r→∞

supx∈Rd |A ∩ (rK + x)|
|rK|

. (3)

Clearly, the notion is translation invariant.
It is also well-known, that DK(A) gives the same value for all nice bodies

K ⊂ Rd (although this fact does not seem immediate from the formulation).
To prove DK1

(A) = DK2
(A) directly would require some tedious ε-covering

of the boundary of K1 by homothetic copies of K2 etc. But we obtain this as
a side result, being an immediate corollary of our Theorem 5, see Remark 6.
Moreover, this way it follows elegantly for arbitrary measurable sets K, too.

The various ways we must encounter in measuring the size of S or A say in
some translated and dilated copy of K ⊂ Rd motivates our further extension:
we are aiming at asymptotic uniform upper densities of measures, say measure
ν with respect to measure µ, and not only sets S or A ⊂ Rd (whether ν is
related to µ (e.g. being the trace of µ on a set) or not).

The general formulation in Rd (or Zd) is thus

DK(ν) := lim sup
r→∞

supx∈Rd ν(rK + x)

|rK|
. (4)

E.g. in (2) ν := # is the cardinality or counting measure of a set S, while
µ := | · | is just the volume. However, to keep the meaningful properties of the
original translation-invariant a.u.u.d., for µ the Lebesgue measure (volume)
remains the only reasonable choice. This is so because of the uniqueness of
Haar measure on groups.

Our heuristics in finding the key definitions for lca groups arose from the
idea of grasping the fact that the set, where we may analyze relative densities
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of the given set A or measure ν, must grow large (as in case of R the dilated
copies rK do). Then we encountered the following nice result in Rudin’s book
[13], see 2.6.7. Theorem on [13, p. 52].

Theorem 3. If ε > 0 and C b G, then there exists a Borel set V in G with
compact closure, such that µ(V + C) < (1 + ε)µ(V ).

Thinking of Rd, it is natural to visualize the content of this lemma as for
any given compact set C the difference between V and V +C is just a bounded
(compact) perturbation on the boundary of V , so if V is chosen quite large,
than the change of volume becomes relatively negligible. This suggested us the
idea of replacing limits and size restrictions by the simple trick of division by
µ(V + C), in place of simply µ(V ), in the definition of a.u.u.d., thus leading
to (5). Indeed, if µ(V ), that is V , is large enough – in the sense of the
above Theorem 3 – then the increase of µ(V ) to µ(V + C) does not matter
asymptotically; and if V is not enough large, than the division by a larger
measure set makes the corresponding quantity out of interest in the search
of high relative density. That was our heuristical idea in the construction of
Definition 4.

Defintion 4. Let G be a LCA group and µ := µG be its Haar measure. If ν
is another measure on G with the sigma algebra of measurable sets being S,
then we define

D(ν) := D(ν;µ) := inf
CbG

sup
V ∈S∩B0

ν(V )

µ(C + V )
. (5)

In particular, if A ⊂ G is Borel measurable and ν = µA is the trace of the
Haar measure on the set A, then we get

D(A) := D(µA) := D(µA;µ) := inf
CbG

sup
V ∈B0

µ(A ∩ V )

µ(C + V )
. (6)

If Λ ⊂ G is any (e.g. discrete) set and γ := γΛ :=
∑
λ∈Λ δλ is the counting

measure of Λ, then we get

D
#

(Λ) := D(γΛ;µ) := inf
CbG

sup
V ∈B0

#(Λ ∩ V )

µ(C + V )
. (7)

Theorem 5. Let K be any convex body in Rd and normalize the Haar measure
of Rd to be equal to the volume | · |. Let ν be any measure with sigma algebra
of measurable sets S. Then we have

D(ν; | · |) = DK(ν) . (8)

The same statement applies also to Zd.



On asymptotic uniform upper density 27

Remark 6. In particular, we find that the asymptotic uniform upper density
DK(ν) does not depend on the choice of K. For a direct proof of this one
has to cover the boundary of a large homothetic copy of K by standard (unit)
cubes, say, and after a tedious ε-calculus a limiting process yields the result.
However, Theorem 1 elegantly overcomes these technical difficulties.

Furthermore, we also introduce a second notion of density as follows.

Defintion 7. Let G be a LCA group and µ := µG be its Haar measure. If ν
is another measure on G with the sigma algebra of measurable sets being S,
then we define

∆(ν) := ∆(ν;µ) := inf
F⊂G,#F<∞

sup
V ∈S∩B0

ν(V )

µ(F + V )
. (9)

In particular, if A ⊂ G is Borel measurable and ν = µA is the trace of the
Haar measure on the set A, then we get

∆(A) := ∆(µA) := ∆(µA;µ) := inf
F⊂G,#F<∞

sup
V ∈B0

µ(A ∩ V )

µ(F + V )
. (10)

If Λ ⊂ G is any (e.g. discrete) set and γ := γΛ :=
∑
λ∈Λ δλ is the counting

measure of Λ, then we get

∆
#

(Λ) := ∆(γΛ;µ) := inf
F⊂G,#F<∞

sup
V ∈B0

#(Λ ∩ V )

µ(F + V )
. (11)

The two definitions are rather similar, except that the requirements for ∆
refer to finite sets only. Because all finite sets are necessarily compact in an
LCA group, (5) of Definition 4 extends the same infimum over a wider family
of sets than (9) of Definition 7; therefore we get an obvious inequality. Also
equality is obvious when G is discrete, for then comopact sets are just the
finite sets. Using also a nice observation of Totik [17], we can even state the
following comparison result.

Proposition 8. Let G be any LCA group, with normalized Haar measure µ.
Let ν be any measure with sigma algebra of measurable sets S. Then we have

∆(ν;µ) ≥ D(ν;µ) . (12)

Moreover, this inequality is an identity for discrete G, when µ becomes the
counting measure #. On the other hand for all non-discrete G there exists
some probability measure ν – and even some set A ⊂ G with A ∈ B and
ν := µ|A) – such that ∆(ν, µ) > D(ν, µ). In other words, ∆ and D coincide
(for all ν) iff G is discrete.
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There are several applications of the above new notion of a.u.u.d. in lca
groups. We could extend several earlier results about the so-called packing-
type estimates in connection to the so-called ”Turán extremal problem”, see
in particular [11]. Also we could extend the following results.

Let us denote the upper density of A ⊂ N as d(A) := lim supn→∞A(n)/n >
0 with A(n) := #(A∩ [1, n]). Erdős and Sárközy (seemingly unpublished, but
quoted in [4] and in [14]) observed the following.

Proposition 9 (Erdős-Sárközi). If the upper density d(A) of a sequence
A ⊂ N is positive, then writing the positive elements of the sequence D(A) :=
D1(A) := A − A as D(A) ∩ N = {(0 <)d1 < d2 < . . . } we have dn+1 − dn =
O(1).

This is analogous, but not contained in the following result of Hegyvári,
obtained for σ-finite groups. An abelian group is called σ-finite (with respect
to Hn), if there exists an increasing sequence of finite subgroups Hn so that
G = ∪∞n=1Hn. For such a group Hegyvári defines asymptotic upper density
(with respect to Hn) of a subset A ⊂ G as

dHn
(A) := lim sup

n→∞

#(A ∩Hn)

#Hn
. (13)

Note that for finite groups this is just #(A ∩ G)/#G. Hegyvári proves the
following [4, Proposition 1].

Proposition 10 (Hegyvári). Let G be a σ-finite abelian group with respect to
the increasing, exhausting sequence Hn of finite subgroups and let A ⊂ G have
positive upper density with respect to Hn. Then there exists a finite subset
B ⊂ G so that A−A+B = G. Moreover, we have #B ≤ 1/dHn

(A).

Fürstenberg calls a subset S ⊂ G in a topological Abelian (semi)group a
syndetic set, if there exists a compact set K ⊂ G such that for each element
g ∈ G there exists a k ∈ K with gk ∈ S; in other words, in topological groups
∪k∈KSk−1 = G. Then he presents as Proposition 3.19 (a) of [2] the following.

Proposition 11 (Fürstenberg). Let S ⊂ Z with positive (upper) Banach
density. Then S − S is a syndetic set.

In fact, our interest in the problem of the definition of a.u.u.d. in general
LCA groups came from another problem, the so-called ”Turán extremal prob-
lem” for positive definite functions. In that question some results, already
known for classical situations like Rd, Zd or compact groups, could also be
extended. For these questions we refer to [11].
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Theorem 12. If G is a LCA group with Haar measure µ, and A ⊂ G has
∆(A) = ∆(A;µ) > 0, then there exists a finite subset B ⊂ G so that A−A+
B = G. Moreover, we can find B with #B ≤ [1/∆(A)].

Remark 13. We need a translation-invariant (Haar) measure, but not the
topology or compactness.

Corollary 14. Let A ⊂ Rd be a (measurable) set with ∆(A) > 0. Then there
exist b1, . . . , bk with k ≤ K := [1/∆(A)] so that ∪kj=1(A−A+ bj) = Rd.

This is interesting as it shows that the difference set of a set of positive
Banach density ∆ is necessarily rather large: just a few translated copies cover
the whole space.

Corollary 15. Let G be a LCA group and S ⊂ G a set with positive a.u.u.
density, i.e. D(S) > 0, where here D(S) = D(µ|S ;µ). Then the difference set
S−S is a syndetic set: moreover, the set of translations K, for which we have
G = S + K, can be chosen not only compact, but even to be a finite set with
#K ≤ [1/D(S)] elements.

This corollary is immediate, because ∆(S) ≥ D(S) according to Proposi-
tion 8.

This indeed generalizes the proposition of Fürstenberg. Also this result
contains the result of Hegyvári: for on σ-finite groups the natural topology is
the discrete topology, whence the natural Haar measure is the counting mea-
sure, and so on σ-finite groups Corollary 15 and Theorem 12 coincides. Finally,
this also generalizes and sharpens the Proposition of Erdős and Sárközy. In-
deed, on Z or N we naturally have ∆(A) = D(A) ≥ d(A), so if the latter is
positive, then so is D(A); and then the difference set is syndetic, with finitely
many translates belonging to a translation set K ⊂ N, say, covering the whole
Z. Hence dn+1 − dn − 1 cannot exceed the maximal element of the finite set
K of translations.

Theorem 16. Let G be a LCA group and S ⊂ G a set with a positive, (but
finite) asymptotic uniform upper density, regarding now the counting measure
of elements of S in the definition of Banach density, i.e. D(S) = D(#|S ;µ) >
0. Then the difference set S − S is a syndetic set.

Lemma 17 (subadditivity). Let ν0 =
∑n
j=1 νj be a sum of measures, all

on the common set algebra S of measurable sets. Then we have D(ν0, µ) ≤∑n
j=1D(νj , µ).
In particular, this holds for one given measure ν and a disjoint union of

sets A0 = ∪nj=1Aj, with νj := ν|Aj
, for j = 0, 1, . . . , k. If ν = µ, this gives

D(∪nj=1Aj) ≤
∑n
j=1D(Aj).
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