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ON IDEALS WHICH COULD BE
ASSOCIATED TO A POSET OF TREES

Let (Q,≤) be a poset. Consider the following types of ideals, which are
associated to (Q,≤).

• (q0) = {S ⊆
⋃
Q : ∀p∈Q∃q≤p q ∩ S = ∅};

• (q1) = {S ⊆ Q : ∀p∈Q∃q≤p {y : y ≤ q} ∩ S = ∅};

• (q2) = {S ⊆ Q∗ : ∀p∈Q∃q≤p) q∗ ∩ S = ∅}.

If Q is a collection of trees, e.g. an arboreal forcing condition like in [3],
then meaning of

⋃
Q is cleared. Formally, trees are contained in SeqX (finite

sequences of elements from X) and any tree T ⊆ SeqX one can identify with
the set [T ] ⊆ Xω of all its infinite branches. Q∗ denotes the collection of all
maximal centered families which are contained in Q and p∗ = {U ∈ Q∗ : p ∈
U}.

Results about:

• The ideal (q2) for ([ω]ω,⊆∗), see [1] and [2];

• (q0) for ([ω]ω,⊆∗) or the Mathias forcing conditions, compare [8] and
[9];

• (q0) for the Silver forcing or n-Silvers forcing conditions, compare [6] and
[7];

are generalized for system of of trees.
System of (Laver) trees where examined in [5] and [4]. Given

< As ∈ [ω]ω : s ∈ ω<ω >= A
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define ps(A) to be the unique Laver tree such that the root of ps(A) is s and
for every node t ⊇ s with t ∈ ps(A) we have that

split(ps(A), t) = At.

Define A ⊆∗ B iff As\Bs is finite for all s ∈ ω<ω, see [5], and define A ≺∗ B iff
As ⊆ Bs for all but finite many s ∈ ω<ω, see [4]. The poset ⊆∗ is separative,
so one can directly adopt Base Matrix Tree Theorem and Kulpa - Szymański
Theorem similarly as in [1], [2]. The poset ≺∗ is not separative, so it need
a non separative version of Base Matrix Tree Theorem. Counter-examples of
systems of trees without properties needed for non separative version of the
Base Trees Theorem are given, too.
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