Anna Wojciechowska, University of Silesia, Institute of Mathematics, ul. Bankowa 14, 40 007 Katowice, Poland.

ON IDEALS WHICH COULD BE ASSOCIATED TO A POSET OF TREES

Let (\mathbb{Q}, \leq) be a poset. Consider the following types of ideals, which are associated to (\mathbb{Q}, \leq) .

- $(q^0) = \{ S \subseteq \bigcup \mathbb{Q} : \forall_{p \in \mathbb{Q}} \exists_{q \le p} \ q \cap S = \emptyset \};$
- $(q^1) = \{ S \subseteq \mathbb{Q} : \forall_{p \in \mathbb{Q}} \exists_{q \le p} \ \{ y : y \le q \} \cap S = \emptyset \};$
- $(q^2) = \{ S \subseteq \mathbb{Q}^* : \forall_{p \in \mathbb{Q}} \exists_{q \le p}) \ q^* \cap S = \emptyset \}.$

If Q is a collection of trees, e.g. an arboreal forcing condition like in [3], then meaning of $\bigcup \mathbb{Q}$ is cleared. Formally, trees are contained in Seq_X (finite sequences of elements from X) and any tree $\mathcal{T} \subseteq Seq_X$ one can identify with the set $[\mathcal{T}] \subseteq X^{\omega}$ of all its infinite branches. \mathbb{Q}^* denotes the collection of all maximal centered families which are contained in \mathbb{Q} and $p^* = \{U \in \mathbb{Q}^* : p \in U\}$.

Results about:

- The ideal (q^2) for $([\omega]^{\omega}, \subseteq^*)$, see [1] and [2];
- (q^0) for $([\omega]^{\omega}, \subseteq^*)$ or the Mathias forcing conditions, compare [8] and [9];
- (q^0) for the Silver forcing or *n*-Silvers forcing conditions, compare [6] and [7];

are generalized for system of of trees.

System of (Laver) trees where examined in [5] and [4]. Given

$$< A_s \in [\omega]^{\omega} : s \in \omega^{<\omega} >= \overline{A}$$

Mathematical Reviews subject classification: Primary: 03A35; Secondary: 06A06 Key words: system of trees , non separative poset

define $p_s(\overline{A})$ to be the unique Laver tree such that the root of $p_s(\overline{A})$ is s and for every node $t \supseteq s$ with $t \in p_s(\overline{A})$ we have that

$$split(p_s(\overline{A}), t) = A_t.$$

Define $\overline{A} \subseteq^* \overline{B}$ iff $A_s \setminus B_s$ is finite for all $s \in \omega^{<\omega}$, see [5], and define $\overline{A} \prec^* \overline{B}$ iff $A_s \subseteq B_s$ for all but finite many $s \in \omega^{<\omega}$, see [4]. The poset \subseteq^* is separative, so one can directly adopt Base Matrix Tree Theorem and Kulpa - Szymański Theorem similarly as in [1], [2]. The poset \prec^* is not separative, so it need a non separative version of Base Matrix Tree Theorem. Counter-examples of systems of trees without properties needed for non separative version of the Base Trees Theorem are given, too.

References

- B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), no. 1, 11 - 24.
- [2] B. Balcar and P. Simon, *Disjoint refinement*, Handbook of Boolean algebras, vol. 2 (1989), North-Holland, Amsterdam, 333 388.
- [3] J. Brendle, Strolling through paradise, Fund. Math. 148 (1995), no. 1, 1 -25.
- [4] M. Goldstern, M. Repick, S. Shelah oraz O. Spinas, On tree ideals, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1573 - 1581.
- [5] H. Judah, A. Miller and S. Shelah, Sacks forcing, Laver forcing, and Martin's axiom, Arch. Math. Logic 31 (1992), no. 3, 145 - 161.
- [6] P. Kalemba, Sz. Plewik and A. Wojciechowska, On the ideal (v⁰), Cent. Eur. J. Math. 6 (2008), no. 2, 218 - 227.
- [7] P. Kalemba and Sz. Plewik, *Ideals which generalize* (v⁰), Cent. Eur. J. Math. 8 (2010), no. 6, 1016 - 1025.
- [8] Sz. Plewik, On completely Ramsey sets, Fund. Math. 127 (1987), no. 2, 127 - 132.
- [9] Sz. Plewik, Ideals of nowhere Ramsey sets are isomorphic, J. Symbolic Logic 59 (1994), no. 2, 662 - 667.