Tomasz Natkaniec, Institute of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland. email: mattn@mat.ug.edu.pl

COVERING AN ADDITIVE FUNCTION BY LESS THAN CONTINUUM MANY CONTINUOUS FUNCTIONS

A function $f : \mathbb{R} \to \mathbb{R}$ is:

- countably linear, if f can be covered by countably many linear functions (i.e. functions $f : \mathbb{R} \to \mathbb{R}$ of the form f(x) = ax + b, where a, b are fixed);
- strongly countably continuous, if there is a sequence $\langle f_n \rangle_{n < \omega}$ of continuous functions from \mathbb{R} to \mathbb{R} such that $f \subset \bigcup_{n < \omega} f_n$.
- strongly < \mathfrak{c} -continuous if there is a cardinal $\kappa < \mathfrak{c}$ and a sequence $\langle f_{\alpha} \rangle_{\alpha < \kappa}$ of continuous functions from \mathbb{R} to \mathbb{R} such that $f \subset \bigcup_{\alpha < \kappa} f_{\alpha}$.

We prove that if a function f is additive and strongly countably continuous then it is countably linear [2]. Thus CH implies that every additive strongly $< \mathfrak{c}$ -continuous function can be covered by less than \mathfrak{c} many linear functions. We show that the negation of this statement is consistent with ZFC. This is a consequence of the existence of a "nice" Hamel basis which is a union of less than continuum many perfect sets [3]. It is known that such bases exist in the iterated perfect set model [1]. Moreover, we prove in ZFC that each additive function which can be covered by less than continuum many lines passing through the point $\langle 0, 0 \rangle$ is continuous.

References

 K. Ciesielski, J. Pawlikowski, Nice Hamel bases under the Covering Property Axiom, Acta Math. Hungar. 105(3), (2004), 197–213.

48

Mathematical Reviews subject classification: Primary: 26A15, 03E75; Secondary: 03E35 Key words: Hamel basis, additive function, strongly continuous function, strongly κ -continuous function, Covering Property Axiom CPA

- [2] T. Natkaniec, On additive countably continuous functions, Publ. Math. Debrecen, to appear.
- [3] T. Natkaniec, Covering an additive function by $< \mathfrak{c}$ many continuous functions, in preparation.