COVERING AN ADDITIVE FUNCTION BY LESS THAN CONTINUUM MANY CONTINUOUS FUNCTIONS

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is:

- countably linear, if f can be covered by countably many linear functions (i.e. functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the form $f(x)=a x+b$, where a, b are fixed);
- strongly countably continuous, if there is a sequence $\left\langle f_{n}\right\rangle_{n<\omega}$ of continuous functions from \mathbb{R} to \mathbb{R} such that $f \subset \bigcup_{n<\omega} f_{n}$.
- strongly $<\mathfrak{c}$-continuous if there is a cardinal $\kappa<\mathfrak{c}$ and a sequence $\left\langle f_{\alpha}\right\rangle_{\alpha<\kappa}$ of continuous functions from \mathbb{R} to \mathbb{R} such that $f \subset \bigcup_{\alpha<\kappa} f_{\alpha}$.

We prove that if a function f is additive and strongly countably continuous then it is countably linear [2]. Thus CH implies that every additive strongly $<\mathfrak{c}$-continuous function can be covered by less than \mathfrak{c} many linear functions. We show that the negation of this statement is consistent with ZFC. This is a consequence of the existence of a "nice" Hamel basis which is a union of less than continuum many perfect sets [3]. It is known that such bases exist in the iterated perfect set model [1]. Moreover, we prove in ZFC that each additive function which can be covered by less than continuum many lines passing through the point $\langle 0,0\rangle$ is continuous.

References

[1] K. Ciesielski, J. Pawlikowski, Nice Hamel bases under the Covering Property Axiom, Acta Math. Hungar. 105(3), (2004), 197-213.

[^0][2] T. Natkaniec, On additive countably continuous functions, Publ. Math. Debrecen, to appear.
[3] T. Natkaniec, Covering an additive function by $<\mathfrak{c}$ many continuous functions, in preparation.

[^0]: Mathematical Reviews subject classification: Primary: 26A15, 03E75; Secondary: 03E35
 Key words: Hamel basis, additive function, strongly continuous function, strongly κ continuous function, Covering Property Axiom CPA

