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RECENT “IMPROVEMENTS” OF THE
LEBESGUE MEASURE

Theorem 1. There exists a Banach measure µ on R2 such that if A ⊆ R2

is a set such that all the linear shades of A are equal to t, then the (planar)
µ-shade of A is also equal to t.

The construction of the measure µ in Theorem 1 is due to James W. Roberts.
The necessary definitions follow.

Definition (Banach measure). Let X denote either R or R2. If µ is an
extension of the Lebesgue measure λ on X that is isometry-invariant and
defined for all subsets of X, then µ is called a Banach measure on X.

Definition (shade). Let X denote either R or R2.

(a) For a Banach measure µ on X, if A ⊆ X and µ(A ∩ J) = t µ(J) for all
bounded open J ⊂ X, we say that A has µ-shade equal to t and we write
shµ(A) = t.

(b) If shµ(A) = t for all Banach measures µ on X, then we say that A has
shade equal to t and we write sh(A) = t.

When X = R (resp., R2) we refer to linear (resp., planar) measures or
shades defined for certain subsets of X. In a natural way, for particular sets
A ⊆ R2, we also consider (linear) shades of sets of the form A ∩ L when L is
a line in R2.
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