Paola Cavaliere, Department of Mathematics, University of Salerno, 84084 Fisciano (Salerno), Italy. email: pcavaliere@unisa.it

Paolo de Lucia,^{*} Department of Mathematics and Applications "R. Caccioppoli", University "Federico II" of Naples, 80126 Napoli, Italy. email: padeluci@unina.it

Hans Weber, Department of Mathematics and Computer Science, University of Udine, 33100 Udine, Italy. email: hans.weber@uniud.it

SOME CONSEQUENCES OF A DENSITY THEOREM IN MEASURE THEORY

Abstract

Let \mathcal{A} be a Boolean algebra and G a complete Hausdorff topological commutative group. We present some properties which \mathcal{A} and G have necessarily to fulfil for every finitely additive function from \mathcal{A} to G to be the pointwise limit of strongly continuous and exhaustive finitely additive functions.

1 Introduction.

We discuss necessary conditions for pointwise approximability of finitely additive functions, defined on a Boolean algebra and taking values into a complete Hausdorff topological commutative group, by means of strongly continuous and exhaustive finitely additive functions. Combining these results with those presented in [2], we are able to furnish a precise characterization of this approximation problem. Proofs and other results on this matter can be found in [1]. For background notions we refer the reader to [2].

Let \mathcal{A} be a Boolean algebra and G a complete Hausdorff topological commutative group, both non-trivial.

We assume that the denseness result

59

Mathematical Reviews subject classification: Primary: 28B10

Key words: additive set functions, approximation, topology of pointwise convergence

^{*}The research for this paper was partially supported by G.N.A.M.P.A. of Istituto Nazionale di Alta Matematica (Italy).

$$\overline{csa(\mathcal{A},G)}^{\tau_p} = a(\mathcal{A},G) \tag{1}$$

does hold true. Here

 $a(\mathcal{A}, G)$ is the group of all *G*-valued finitely additive functions on \mathcal{A} , equipped with the product topology τ_p , and $csa(\mathcal{A}, G)$ its subgroup consisting of those functions which are exhaustive and strongly continuous. In other words, our point of departure is that each *G*-valued finitely additive functions defined on \mathcal{A} is the pointwise limit of strongly continuous and exhaustive finitely additive functions.

2 Main Results.

We firstly show that

I): The validity of (1) yields that the Boolean algebra \mathcal{A} must be atomless.

In fact, any function belonging to $csa(\mathcal{A}, G)$ must be zero on atoms of \mathcal{A} , and both \mathcal{A} and G are non-trivial.

Moreover

II): The validity of (1) implies that the set

 $c_o(G) := \{y \in G : y \text{ can be joined to } 0 \text{ by a path}\}$

is dense in G. In particular, the group G must be connected.

On account of Theorem 2 and Corollary 3 in [2] we are able to deduce by I)-II) that

III): Whenever G is a locally compact group, then the following are equivalent:

- i) (1) holds true;
- ii) \mathcal{A} is atomless and the set $c_o(G)$ is dense in G;
- iii) A is atomless and G is connected.

Let us emphasize that *III*) tells us that

for a locally compact group either (1) holds for all atomless Boolean algebras (if G is connected) or for *none* of them (if G is not connected).

We exhibit that such a dichotomy pertains to any complete group G, namely

IV): If (1) holds for some atomless algebra A, then it holds for all of them.

In contrast to this, for $G = \mathbb{Q}$ the validity of (1) depends on \mathcal{A} as the following examples show.

Example 1.- For any σ -algebra \mathcal{A} the set $csa(\mathcal{A}, \mathbb{Q})$ is not dense in $a(\mathcal{A}, \mathbb{Q})$, *i.e.* (1) fails.

Example 2.- Let \mathcal{A} be the algebra generated by the collection

 $\mathcal{F} := \{ [(i-1)/2^n, i/2^n] : i, n \in \mathbb{N}, i \le 2^n \}.$

Then $csa(\mathcal{A}, \mathbb{Q})$ is dense in $a(\mathcal{A}, \mathbb{Q})$, *i.e.* (1) holds true.

We highlight that the characterizations of (1) described in III however fail for merely complete groups, even tempting to replace the requirement of connectedness of G in III)-iii) by that of its arcwise connectedness, as shown in [1, Appendix 5].

What needed is, in fact, a stronger connected property of G, namely the denseness in G of its subset $c_1(G)$ consisting of all elements joined to 0 by some path $\gamma : [0,1] \to G$ satisfying the additional property that the series $\sum_{n=1}^{\infty} (\gamma(\beta_n) - \gamma(\alpha_n))$, where $([\alpha_n, \beta_n])_{n \in \mathbb{N}}$ is any disjoint sequence in [0, 1], converges. In the special case $G = \mathbb{R}$, this means that the path γ must be of bounded variation.

In the case of merely complete groups our investigation yields that

- V): Whenever G is complete, then the following are equivalent:
 - i) (1) holds true;
 - ii) \mathcal{A} is atomless and the set $c_1(G)$ -just defined- is dense in G.

References

- [1] P. Cavaliere, P. de Lucia and H. Weber, *Approximation of finitely additive functions valued into topological groups*, preprint.
- [2] P. Cavaliere, P. de Lucia and H. Weber, A density theorem in measure theory, Proceedings of Summer Symposium in Real Analysis XXXV, Budapest, June 5-11, 2011.