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A CHARACTERIZATION OF THE WEAK
RADON-NIKODÝM PROPERTY BY

FINITELY ADDITIVE INTERVAL
FUNCTIONS

1 Preliminaries

Let [0, 1] be the unit interval of the real line R equipped with the usual topo-
logy and the Lebesgue measure λ. We denote by I the family of all nontrivial
closed subintervals of [0, 1] and by L the family of all Lebesgue measurable
subsets of [0, 1].

Throughout this paper X is a Banach space. If µ is an outer measure on
[0, 1], then by µ � λ we mean that λ(E) = 0 implies µ(E) = 0. A mapping
ν : L → X is said to be an X-valued measure if ν is countably additive in
the norm topology of X. ν is said to be λ-continuous if |E| = 0 implies
ν(E) = 0. The variation of an X-valued measure ν is denoted by |ν|. A
function f : [0, 1] → X is said to be scalarly measurable if for each x∗ ∈ X∗
the real function x∗f is measurable.

A Banach space X has the weak Radon-Nikodým property (see [4] or [5,
Theorem 11.3]) if and only if for every measure ν : L → X of σ-finite variation,
that is absolutely continuous with respect to the Lebesgue measure, there
exists a Pettis integrable function f : [0, 1]→ X such that

ν(E) =

∫
E

f(t) dt, for every set E ∈ L. (1)
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More information on Pettis-integrable functions can be found in [5] and [6]. A
partition in [0, 1] is a finite collection of pairs P = {(I1, t1), . . . , (Ip, tp)}, where
I1, . . . , Ip are non-overlapping subintervals of [0, 1] and ti ∈ Ii, i = 1, . . . , p.
Given a subset E of [0, 1], we say that the partition P is anchored on E if
ti ∈ E for each i = 1, ..., p. If ∪pi=1Ii = [0, 1] we say that P is a partition of
[0, 1]. A gauge on E ⊂ [0, 1] is a positive function on E. For a given gauge δ, we
say that a partition {(I1, t1), . . . , (Ip, tp)} is δ-fine if Ii ⊂ (ti−δ(xi), ti+δ(xi)),
i = 1, . . . , p.

Definition 1. A function f : [0, 1]→ R is said to be Henstock-Kurzweil inte-
grable, (or HK-integrable), on [0, 1], if there exists w ∈ R with the following
property: for every ε > 0 there exists a gauge δ on [0, 1] such that∣∣∣∣∣

p∑
i=1

f(ti)|Ii| − w

∣∣∣∣∣ < ε ,

for each δ-fine partition P = {(I1, t1), . . . , (Ip, tp)} of [0, 1].

We set w := (HK)
∫ 1

0
fdλ.

It is known that if f : [0, 1]→ R is HK-integrable on [0, 1] and I ∈ I, then
fχI is also HK-integrable on [0, 1]. We say in such a case that f is HK-
integrable on I. We call the additive interval function F (I) : = (HK)

∫
I
fdλ

the HK-primitive of f .

Definition 2. A function f : [0, 1] → X is said to be scalarly Henstock-
Kurzweil integrable if for each x∗ ∈ X∗ the function x∗f is Henstock-Kurzweil
integrable. A scalarly Henstock-Kurzweil integrable function f is said to be
Henstock-Kurzweil-Pettis integrable (or HKP -integrable) if for each I ∈ I there
exists wI ∈ X such that

〈x∗, wI〉 = (HK)

∫
I

x∗fdλ , for every x∗ ∈ X∗.

We call wI the Henstock-Kurzweil-Pettis integral of f over I and we write

wI : = (HKP )
∫
I
fdλ. If I = [a, b], then we write (HKP )

∫ b
a
fdλ instead of

(HKP )
∫
[a,b]

fdλ. �

We denote by HKP ([0, 1], X) the set of all X-valued Henstock-Kurzweil-
Pettis integrable functions on [0, 1] (functions that are scalarly equivalent are
identified). More information on HKP -integrable functions can be found in
[3].

It is known that the HK-primitive (resp. HKP -primitive) F of a function
f is continuous (resp. weakly continuous, i.e. x∗F is continuous for every
x∗ ∈ X∗).
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Definition 3. Let F : [0, 1]→ X be a function and G be a non-empty subset
of [0, 1]. If there is a function F ′p : G→ X such that for each x∗ ∈ X∗

lim
h→0

x∗F (t+ h)− x∗F (t)

h
= x∗(F ′p(t)) ,

for almost all t ∈ G, then F is said to be pseudo-differentiable on G (the
exceptional sets depend on x∗), with a pseudo-derivative F ′p.

2 Variational Measures

Throughout the letter Φ will denotes an arbitrary additive interval function
Φ : I → X that is identified with the point function Φ(t) = Φ([0, t]), t ∈ [0, 1].

Definition 4. Given Φ : I → X, a gauge δ and a set E ⊂ [0, 1] we define

Var(Φ, δ, E) : = sup

{ ∑p
i=1 ||Φ(Ii)|| : {(Ii, ti) : i = 1, ..., p} δ−fine

partition anchored on E

}
.

Then we set
VΦ(E) : = inf{Var(Φ, δ, E) : δ gauge on E}.

We call VΦ the variational measure generated by Φ. It is known that VΦ is a
metric outer measure on [0, 1] (see [7]). In particular, VΦ is a measure over all
Borel sets of [0, 1].

Definition 5. We say that the variational measure VΦ is σ-finite if there is a
sequence of (pairwise disjoint) sets Fn covering [0, 1] and such that VΦ(Fn) <
∞, for every n ∈ N.

Thomson (see [7, Theorem 3.15]) proved that VΦ has the so called mea-
surable cover property, that is if A ⊂ [0, 1], then there exists B ∈ L such
that B ⊃ A and VΦ(B) = VΦ(A). It follows from this that the sets Fn in the
previous definition can be taken from L.

Proposition 6. [1] If VΦ � λ, then Φ is continuous on [0, 1] and VΦ is σ-finite.

We recall that a function Φ : [0, 1] → X is said to be BV∗ on a set E ⊆
[0, 1] if sup

∑n
i=1 ω(Φ(Ji)) < +∞, where the supremum is taken over all finite

collections {J1, ..., Jn} of non overlapping intervals from I with end-points in
E, and the symbol ω(Φ(J)) stands for sup{‖Φ(u) − Φ(z)‖ : u, z ∈ J}. The
function Φ is said to be BV G∗ on [0, 1] if [0, 1] =

⋃
nEn and Φ is BV∗ on each

En.
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Proposition 7. [1] VΦ is σ-finite if and only if Φ is BV G∗ on [0, 1].

The following theorem is the main result:

Theorem 8. [1] Let X be a Banach space. Then the following conditions are
equivalent:
(i) X has the weak Radon-Nikodým property;
(ii) If Φ : I → X is BV∗ on [0, 1], then Φ is pseudo-differentiable on [0, 1];
(iii) If Φ : I → X is BV G∗ on [0, 1], then Φ is pseudo-differentiable on [0, 1];
(iv) If VΦ is σ-finite, then Φ is pseudo-differentiable on [0, 1];
(v) If VΦ � λ, then Φ is pseudo-differentiable on [0, 1];
(vi) If VΦ � λ, then Φ is pseudo-differentiable on [0, 1] , Φ′p ∈ HKP ([0, 1], X)
and

Φ(I) = (HKP )

∫
I

Φ′p dλ , for every I ∈ I ;

(vii) If VΦ � λ, then there exists f ∈ HKP ([0, 1], X) such that

Φ(I) = (HKP )

∫
I

f dλ , for every I ∈ I.
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