Kazimierz Musiał,* Wrocław University, Institute of Mathematics, 50-384 Wrocław, Poland. email: musial@math.uni.wroc.pl

A CHARACTERIZATION OF THE WEAK RADON-NIKODÝM PROPERTY BY FINITELY ADDITIVE INTERVAL FUNCTIONS

1 Preliminaries

Let [0, 1] be the unit interval of the real line \mathbb{R} equipped with the usual topology and the Lebesgue measure λ . We denote by \mathcal{I} the family of all nontrivial closed subintervals of [0, 1] and by \mathcal{L} the family of all Lebesgue measurable subsets of [0, 1].

Throughout this paper X is a Banach space. If μ is an outer measure on [0,1], then by $\mu \ll \lambda$ we mean that $\lambda(E) = 0$ implies $\mu(E) = 0$. A mapping $\nu: \mathcal{L} \to X$ is said to be an X-valued measure if ν is countably additive in the norm topology of X. ν is said to be λ -continuous if |E| = 0 implies $\nu(E) = 0$. The variation of an X-valued measure ν is denoted by $|\nu|$. A function $f: [0,1] \to X$ is said to be scalarly measurable if for each $x^* \in X^*$ the real function x^*f is measurable.

A Banach space X has the weak Radon-Nikodým property (see [4] or [5, Theorem 11.3]) if and only if for every measure $\nu \colon \mathcal{L} \to X$ of σ -finite variation, that is absolutely continuous with respect to the Lebesgue measure, there exists a Pettis integrable function $f \colon [0, 1] \to X$ such that

$$\nu(E) = \int_{E} f(t) dt, \quad \text{for every set } E \in \mathcal{L}.$$
(1)

75

Mathematical Reviews subject classification: Primary: 28B05; Secondary: 26A45, 46G05, 46G10 Key words: Kurzweil-Henstock integral, Pettis integral, weak Radon-Nikodým property,

variational measure

^{*}The author was partially supported by the grant N N201 416139.

More information on Pettis-integrable functions can be found in [5] and [6]. A partition in [0, 1] is a finite collection of pairs $\mathcal{P} = \{(I_1, t_1), \ldots, (I_p, t_p)\}$, where I_1, \ldots, I_p are non-overlapping subintervals of [0, 1] and $t_i \in I_i$, $i = 1, \ldots, p$. Given a subset E of [0, 1], we say that the partition \mathcal{P} is anchored on E if $t_i \in E$ for each $i = 1, \ldots, p$. If $\bigcup_{i=1}^p I_i = [0, 1]$ we say that \mathcal{P} is a partition of [0, 1]. A gauge on $E \subset [0, 1]$ is a positive function on E. For a given gauge δ , we say that a partition $\{(I_1, t_1), \ldots, (I_p, t_p)\}$ is δ -fine if $I_i \subset (t_i - \delta(x_i), t_i + \delta(x_i))$, $i = 1, \ldots, p$.

Definition 1. A function $f: [0,1] \to \mathbb{R}$ is said to be *Henstock-Kurzweil inte*grable, (or *HK-integrable*), on [0,1], if there exists $w \in \mathbb{R}$ with the following property: for every $\epsilon > 0$ there exists a gauge δ on [0,1] such that

$$\left|\sum_{i=1}^p f(t_i)|I_i| - w\right| < \varepsilon \,,$$

for each δ -fine partition $\mathcal{P} = \{(I_1, t_1), \dots, (I_p, t_p)\}$ of [0, 1]. We set $w := (HK) \int_0^1 f d\lambda$.

It is known that if $f: [0,1] \to \mathbb{R}$ is HK-integrable on [0,1] and $I \in \mathcal{I}$, then $f\chi_I$ is also HK-integrable on [0,1]. We say in such a case that f is HK-integrable on I. We call the additive interval function $F(I) := (HK) \int_I f d\lambda$ the HK-primitive of f.

Definition 2. A function $f: [0,1] \to X$ is said to be *scalarly Henstock-Kurzweil integrable* if for each $x^* \in X^*$ the function x^*f is Henstock-Kurzweil integrable. A scalarly Henstock-Kurzweil integrable function f is said to be *Henstock-Kurzweil-Pettis integrable* (or *HKP-integrable*) if for each $I \in \mathcal{I}$ there exists $w_I \in X$ such that

$$\langle x^*, w_I \rangle = (HK) \int_I x^* f d\lambda$$
, for every $x^* \in X^*$.

We call w_I the Henstock-Kurzweil-Pettis integral of f over I and we write $w_I := (HKP) \int_I f d\lambda$. If I = [a, b], then we write $(HKP) \int_a^b f d\lambda$ instead of $(HKP) \int_{[a,b]} f d\lambda$.

We denote by HKP([0,1], X) the set of all X-valued Henstock-Kurzweil-Pettis integrable functions on [0,1] (functions that are scalarly equivalent are identified). More information on HKP-integrable functions can be found in [3].

It is known that the *HK*-primitive (resp. *HKP*-primitive) F of a function f is continuous (resp. weakly continuous, i.e. x^*F is continuous for every $x^* \in X^*$).

Definition 3. Let $F : [0,1] \to X$ be a function and G be a non-empty subset of [0,1]. If there is a function $F'_p : G \to X$ such that for each $x^* \in X^*$

$$\lim_{h \to 0} \frac{x^* F(t+h) - x^* F(t)}{h} = x^* (F_p'(t)) ,$$

for almost all $t \in G$, then F is said to be *pseudo-differentiable on* G (the exceptional sets depend on x^*), with a *pseudo-derivative* F'_p .

2 Variational Measures

Throughout the letter Φ will denotes an arbitrary additive interval function $\Phi: \mathcal{I} \to X$ that is identified with the point function $\Phi(t) = \Phi([0, t]), t \in [0, 1]$.

Definition 4. Given $\Phi \colon \mathcal{I} \to X$, a gauge δ and a set $E \subset [0,1]$ we define

$$\operatorname{Var}(\Phi, \delta, E) := \sup \left\{ \begin{array}{cc} \sum_{i=1}^{p} \| \Phi(I_i) \| : & \{(I_i, t_i) : i = 1, ..., p\} \ \delta - \text{fine} \\ & \text{partition anchored on } E \end{array} \right\}.$$

Then we set

 $V_{\Phi}(E) := \inf \{ \operatorname{Var}(\Phi, \delta, E) : \delta \text{ gauge on } E \}.$

We call V_{Φ} the variational measure generated by Φ . It is known that V_{Φ} is a metric outer measure on [0, 1] (see [7]). In particular, V_{Φ} is a measure over all Borel sets of [0, 1].

Definition 5. We say that the variational measure V_{Φ} is σ -finite if there is a sequence of (pairwise disjoint) sets F_n covering [0, 1] and such that $V_{\Phi}(F_n) < \infty$, for every $n \in \mathbb{N}$.

Thomson (see [7, Theorem 3.15]) proved that V_{Φ} has the so called measurable cover property, that is if $A \subset [0, 1]$, then there exists $B \in \mathcal{L}$ such that $B \supset A$ and $V_{\Phi}(B) = V_{\Phi}(A)$. It follows from this that the sets F_n in the previous definition can be taken from \mathcal{L} .

Proposition 6. [1] If $V_{\Phi} \ll \lambda$, then Φ is continuous on [0, 1] and V_{Φ} is σ -finite.

We recall that a function $\Phi : [0,1] \to X$ is said to be BV_* on a set $E \subseteq [0,1]$ if $\sup \sum_{i=1}^n \omega(\Phi(J_i)) < +\infty$, where the supremum is taken over all finite collections $\{J_1, ..., J_n\}$ of non overlapping intervals from \mathcal{I} with end-points in E, and the symbol $\omega(\Phi(J))$ stands for $\sup\{\|\Phi(u) - \Phi(z)\| : u, z \in J\}$. The function Φ is said to be BVG_* on [0,1] if $[0,1] = \bigcup_n E_n$ and Φ is BV_* on each E_n .

Proposition 7. [1] V_{Φ} is σ -finite if and only if Φ is BVG_* on [0,1].

The following theorem is the main result:

Theorem 8. [1] Let X be a Banach space. Then the following conditions are equivalent:

(i) X has the weak Radon-Nikodým property;

(ii) If $\Phi : \mathcal{I} \to X$ is BV_* on [0, 1], then Φ is pseudo-differentiable on [0, 1];

(iii) If $\Phi : \mathcal{I} \to X$ is BVG_* on [0, 1], then Φ is pseudo-differentiable on [0, 1]; (iv) If V_{Φ} is σ -finite, then Φ is pseudo-differentiable on [0, 1];

(v) If $V_{\Phi} \ll \lambda$, then Φ is pseudo-differentiable on [0, 1];

(vi) If $V_{\Phi} \ll \lambda$, then Φ is pseudo-differentiable on [0,1], $\Phi'_p \in HKP([0,1], X)$ and

$$\Phi(I) = (HKP) \int_{I} \Phi'_{p} d\lambda$$
, for every $I \in \mathcal{I}$;

(vii) If $V_{\Phi} \ll \lambda$, then there exists $f \in HKP([0,1], X)$ such that

$$\Phi(I) = (HKP) \int_{I} f \, d\lambda, \quad \text{for every} \quad I \in \mathcal{I}.$$

References

- B. Bongiorno, L. Di Piazza and K. Musiał, A characterization of the weak Radon-Nikodym property by finitely additive interval functions, Bull. Australian Math. Soc. 80(2009), 476–485.
- [2] L. Di Piazza, Varational measures in the theory of the integration in R^m, Czechos. Math. J. 51(2001) 95–110.
- [3] L. Di Piazza and K. Musial, Characterizations of Kurzweil-Henstock-Pettis integrable functions, Studia Math. 176(2006) 159–176.
- [4] K. Musiał, A characterization of the weak Radon-Nikodym property in terms of the Lebesgue measure, Proc. Conf. Topology and Measure III, Vitte/Hiddensee, Wiss. Bait. Ernstz-Arndt-Univ. Greinfwald, (1980)163– 168.
- [5] K. Musiał, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23(1991) 177–262.
- [6] K. Musiał, Pettis integral. Handbook of Measure Theory I, E. Pap, ed., Elsevier, Amsterdam: (2002)531–586.
- [7] B.S. Thomson, Derivatives of Interval Functions, Memoirs AMS 452(1991)