CONDITIONS FOR NON-NEGATIVITY OF QUADRATIC FUNCTIONS

A real function f is called quadratic if it fulfils the functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

for every real numbers x and y. Assuming that f is quadratic and f is nonnegative on a Lebesgue measurable set with positive Lebesgue measure, we establish that f has to be non-negative everywhere.

This research is motivated by a representation theorem for non-negative quadratic functions [1] as well as by analogous conditions for the continuity of the solutions of monomial or polynomial functional equations [2]. We note, however, that our methods are completely different. Moreover, our condition does not imply the measurability of f.

References

[1] Gy. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glas. Mat. Ser. III 15(35)/2 (1980), 279-282.
[2] L. Székelyhidi, Regularity properties of polynomials on groups, Acta Math. Hung. 45(1-2) (1985), 15-19.

[^0]
[^0]: Mathematical Reviews subject classification: Primary: 39B22, 26A30; Secondary: 28A05
 Key words: functional equation, quadratic function, Lebesgue measure, non-negativity
 *The research for this talk was supported by the Hungarian Scientific Research Fund (OTKA) grant NK 81402.

