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REPRESENTATION

Abstract

We consider a role which the notion of quasi-measure plays in the
theory of Walsh and Haar series and in harmonic analysis on zero-
dimensional groups or, more generally, on zero-dimensional metric spaces.

The notion of quasi-measure appeared first in the theory of Walsh and
Haar series. Let S2k be the partial sums of Walsh or Haar series (here 2k

stand for (2k1 , . . . , 2km)). The integral∫
I(k)

S2k

where I(k) is a dyadic interval of rank k either in [0, 1]m or in Gm, where G
is the dyadic Cantor group, defines an additive interval function ψ(I) (quasi-
measure) on the family Id of all dyadic intervals. Since the sum S2k is constant
on each I(k) (in the interior of I(k) in the case of [0, 1]m) we get

S2k(x) =
1

|I(k)|

∫
I(k)

S2k =
ψ(J (k))

|I(k)|
(1)

for any interior point x ∈ I(k). This formula reduces the problem of recovering
the coefficients of a series to the one of recovering the quasi-measure from its
derivative.
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Proposition 1. Let some integration process A be given which produces an
additive integral on Id. Let the Id-interval function ψ be defined for a Walsh
or Haar series by (1) Then this series is the Fourier series of an A-integrable
function f if and only if ψ(I) = (A)

∫
I
f for any dyadic interval I.

Formula (1) gives a relation between convergence of the series and dif-
ferentiability of the quasi-measure only at the points with dyadic irrational
coordinates. At other points we have to introduce various types of conti-
nuity, which are implied by various types of convergence of the series. For
example, rectangular convergence at a point implies the local Saks continuity:
limµ(I)→0, x∈I ψ(I) = 0. ρ-regular convergence implies another type of conti-
nuity. Assuming differentiability of a quasi-measure and its continuity in a
certain sense we can recover it from its derivative by Henstock-Kurzweil or
Perron type integrals (see [2] and [4] for details). As an example of a recent
result obtained by the method of quasi-measure, we mention the following
uniqueness theorem.

Theorem (M.Plotnikov). 1). For any ρ ∈ (
√

2/2, 1] there exists a non-trivial
double Haar series which is ρ-regular convergent to zero everywhere on the
unit square.

2). If ρ ∈ (0,
√

2/2) then ∅ is U -set for ρ-regular convergence.

For ρ-regular convergent Walsh series (with ρ close to 1) the problem of
uniqueness is open even in the case of cubic convergence.

In a similar way a quasi-measure can be generated by a series with respect
to characters of a zero-dimensional compact abelian group G. Topology in
such a group is known (see [1]) to be given by a chain of subgroups

G = G0 ⊃ G1 ⊃ ... ⊃ Gn ⊃ ...,

with {0} =
⋂+∞
n=0Gn. Denote by Kn, n ≥ 0 any coset of Gn and call it B-

interval. For a fixed g ∈ G, let Kn(g) be the coset of Gn such that g ∈ Kn(g),
i.e., Kn(g) = g +Gn. For each g ∈ G we have {g} =

⋂
nK

n(g). Let µ be the
Haar measure on G, normalized so that µ(G) = 1.

Let Γ be the dual group of G, i.e., the group of characters of the group
G. Γ is a discrete abelian group with respect to the pointwise multiplication
of characters. It can be represented as a sum of an increasing sequence of
subgroups of finite order:

Γ0 ⊂ Γ−1 ⊂ Γ−2 ⊂ ... ⊂ Γ−n ⊂ ...

Then Γ = ∪+∞
i=0 Γ−i and ∩+∞

i=0 Γ−i = {γ(0)} where γ(0)(g) = 1 for all g ∈ G.
For each n ≥ 0 the group Γ−n is the annulator of Gn, i.e., Γ−n = G⊥n := {γ ∈
Γ : γ(g) = 1 for all g ∈ Gn}.
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If γ ∈ Γ−n then γ is constant on each coset Kn of Gn.
We define a convergence of the series

∑
γ∈Γ aγγ at a point g as the con-

vergence of its partial sums of the form

Sn(g) :=
∑

γ∈Γ−n

aγγ(g)

when n→∞. Now the quasi-measure associated with the series
∑
γ∈Γ aγγ is

defined on each coset Kn by

F (Kn) :=

∫
Kn

Sn(g)dµ. (2)

F is an additive function on the family of all B-intervals. Since the sum Sn is
constant on each Kn, the definition of F (Kn) implies

Sn(g) =
F (Kn(g))

µ(Kn(g))
.

Once again the problem of recovering the coefficients of the series
∑
γ∈Γ aγγ

from its sum is equivalent to the one of recovering the quasi-measure from its
derivative. Indeed we have

Theorem 2. A series
∑
γ∈Γ aγγ is the A-Fourier series of some A-integrable

function f if the quasi-measure F associated by (2) with this series coincides
on each B-interval K with the indefinite integral (A)

∫
K
fdµ.

The problem can be solved by a suitable Henstock-type integral which is
defined below in a more general setting. It turns out that the group structure
is not essential in this theory and we can formulate our problem using a zero-
dimensional metric space instead of a group.

Let a sequence {Cn}∞n=1 of covers of a zero-dimensional compact metric
space X be given such that

(a) for each fixed n, elements K
(n)
j of Cn, are disjoint and clopen;

(b) each element of Cn is properly contained in some element of Cn−1, for
n ≥ 2;

(c) C1 = {X}.
Let K(n, x) be the (unique) element K

(n)
j(n,x) of Cn such that x ∈ K(n)

j(n,x).

A sequence {K(n, x)}n is defined for each x so that
⋂
nK(n, x) = {x}.

We assume that a Borel probability measure µ is given onX. So
∑m(n)
j=1 µ(K

(n)
j ) =

1. We denote I =
⋃∞
n=1 Cn and refer to elements of I as B-intervals.
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We introduce the set of B-polynomials

P (X) = span{χK : K ∈ I}.

P (X) is a dense linear subspace of C(X). We call elements of P (X)?, the
linear space dual of P (X), quasi-measures. It is easy to understand that in
the case of a zero-dimensional group this new notion of quasi-measure can be
interpreted in the previous way.

If S is a quasi-measure and g ∈ P (X) we denote by (S, g) the value of S
at g.

In particular a function f of L1(µ) defines a quasi-measures if we put its
value at g ∈ P (X) to be

(f, g) = (fdµ, g) :=

∫
X

fg dµ.

A quasi-measure can be defined by specifying (S, χK) for eachK ∈
⋃∞
n=0 Cn.

If S is a quasi-measure, x an element of X, and n ≥ 0, we define the n-th
partial sum of the “Fourier series” of S at x to be

sn(S, x) = sn(S)(x) := (S, χK(n,x))/µ(K(n, x)).

For a fixed sequence {Cn}∞n=1 and the measure µ, we define a derivation
basis B in X as the family of all basis sets

βν := {(I, x) : x ∈ X, I = K(n, x), n ≥ ν(x)}.

where ν runs over the set of all function ν : X → N
A βν-partition is a finite collection π of elements of βν , where the distinct

elements (I ′, x′) and (I ′′, x′′) in π have I ′ and I ′′ disjoint. If L ∈ I and⋃
(I,x)∈π I = L then π is called βν-partition of L.

A Henstock type integral in this setting can be defined as follows (see [3]).

Definition 1. Let L ∈ I. A real-valued function f on L is said to be Henstock
integrable with respect to basis B (or HB-integrable) on L, with HB-integral A,
if for every ε > 0, there exists a function ν : L 7→ N such that for any βν-
partition π of L we have: ∣∣∣∣ ∑

(I,x)∈π

f(x)µ(I)−A
∣∣∣∣ < ε.

We denote the integral value A by (HB)
∫
L
f.
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If a function f is HB-integrable on L and f = h almost everywhere, then h
is also HB-integrable and their integrals coincide. This justifies the following
generalization of the previous definition.

Definition 2. A real-valued function f defined almost everywhere on L ∈ I
is said to be HB-integrable on L, with integral value A, if the function

f1(x) :=

{
f(x), where f is defined,
0, otherwise

is HB-integrable on L to A in the sense of Definition 1.

If f is HB-integrable on L ∈ I then it is HB-integrable also on any
B-interval K ⊂ L. So we can define the indefinite HB-integral F (K) =
(HB)

∫
K
fdµ. It is an additive B-interval function on the set of all B-intervals

K ⊂ L.

Definition 3. Given a real-valued set function F on I we define the upper and
the lower B-derivative at a point x, with respect to the basis B and measure
µ, as

DBF (x) := lim sup
n→∞

F (K(n, x))

µ(K(n, x))

and

DBF (x) := lim inf
n→∞

F (K(n, x))

µ(K(n, x))
,

respectively. If DBF (x) = DBF (x), then F is B-differentiable at the point x
with B-derivative DBF (x) being this common value.

Theorem 3. If a function f is HB-integrable on a B-interval L then the
indefinite HB-integral F (I) = (HB)

∫
I
f as an additive function on the set of

all B-subintervals of L, is B-differentiable almost everywhere on L and

DBF (x) = f(x) a.e. on L.

The above theorem holds for every measure µ. Some other properties, in
particular continuity of the indefinite integral, depend on the fact whether µ
is non-atomic or not.

Definition 4. A real-valued set function F defined on I is B-continuous at a
point x if limn→∞ F (K(n, x)) = 0.

Any non-atomic measure µ on X is B-continuous at any point. The indef-
inite HB-integral on L ∈ I is B-continuous at each point of L if the measure
µ is non-atomic.

The following results is related to an integral representation of a quasi-
measure by HB-integral.
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Theorem 4. Suppose that S is a quasi-measure and the measure µ is non-
atomic. Let sn(S) and an HB-integrable function f satisfy the inequality

lim inf
n→∞

sn(S, x) ≤ f(x) ≤ lim sup
n→∞

sn(S, x)

everywhere on X except on a countable set, where

lim inf
n→∞

(S, χK(n,x)) ≤ 0 ≤ lim sup
n→∞

(S, χK(n,x))

holds. Then the sequence sn(S, x) is convergent to f almost everywhere and
the quasi-measure S can be represented as

(S, g) = (f, g) = (HB)

∫
X

fg

for each B-polynomial g ∈ P (X).

Corollary 5. Suppose that S is a quasi-measure and the measure µ is non-
atomic. Let sn(S) and an HB-integrable function f satisfy the inequality

lim inf
n→∞

sn(S, x) ≤ f(x) ≤ lim sup
n→∞

sn(S, x)

almost everywhere and the condition

lim sup |sn(S, x)| <∞

everywhere on X except on a countable set, where

lim inf
n→∞

(S, χK(n,x)) ≤ 0 ≤ lim sup
n→∞

(S, χK(n,x))

holds. Then the sequence sn(S, x) is convergent to f almost everywhere and
the quasi-measure S can be represented as

(S, g) = (f, g) = (HB)

∫
X

fg

for each g ∈ P (X).

Theorem 6. Let S be a quasi-measure and let sn(S) converge to a function
f everywhere on X outside of a set E ∪M such that µ(E) = 0 with

lim sup
n→∞

|sn(S, x)| <∞
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everywhere on E and M is a countable set where

lim
n→∞

(S, χK(n,x)) = 0.

Then f is HB-integrable on X in the sense of Definition 2 and S can be
identified with f so that for each g ∈ P (X)

(S, g) = (f, g) = (HB)

∫
X

fg.

Some of the above results are to be published in [5].
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