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QUASI-MEASURE IN HARMONIC
ANALYSIS AND ITS INTEGRAL
REPRESENTATION

Abstract

We consider a role which the notion of quasi-measure plays in the
theory of Walsh and Haar series and in harmonic analysis on zero-
dimensional groups or, more generally, on zero-dimensional metric spaces.

The notion of quasi-measure appeared first in the theory of Walsh and
Haar series. Let Sox be the partial sums of Walsh or Haar series (here 2
stand for (2F1,...,2%)). The integral
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where T®) is a dyadic interval of rank k either in [0,1]™ or in G™, where G
is the dyadic Cantor group, defines an additive interval function ¢ (I) (quasi-
measure) on the family Z, of all dyadic intervals. Since the sum S,k is constant
on each I® (in the interior of I in the case of [0,1]™) we get
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for any interior point x € I, This formula reduces the problem of recovering
the coefficients of a series to the one of recovering the quasi-measure from its
derivative.
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Proposition 1. Let some integration process A be given which produces an
additive integral on Zy. Let the Ly-interval function v be defined for a Walsh
or Haar series by (1) Then this series is the Fourier series of an A-integrable
function f if and only if Y(I) = (A) [, f for any dyadic interval I.

Formula (1) gives a relation between convergence of the series and dif-
ferentiability of the quasi-measure only at the points with dyadic irrational
coordinates. At other points we have to introduce various types of conti-
nuity, which are implied by various types of convergence of the series. For
example, rectangular convergence at a point implies the local Saks continuity:
lim,,(1y—0,zer (1) = 0. p-regular convergence implies another type of conti-
nuity. Assuming differentiability of a quasi-measure and its continuity in a
certain sense we can recover it from its derivative by Henstock-Kurzweil or
Perron type integrals (see [2] and [4] for details). As an example of a recent
result obtained by the method of quasi-measure, we mention the following
uniqueness theorem.

Theorem (M.Plotnikov). 1). For any p € (v/2/2,1] there exists a non-trivial
double Haar series which is p-reqular convergent to zero everywhere on the
unit square.

2). If p € (0,v/2/2) then () is U-set for p-regqular convergence.

For p-regular convergent Walsh series (with p close to 1) the problem of
uniqueness is open even in the case of cubic convergence.

In a similar way a quasi-measure can be generated by a series with respect
to characters of a zero-dimensional compact abelian group G. Topology in
such a group is known (see [1]) to be given by a chain of subgroups

G=GyDGD..0G, D ..,

with {0} = I:(’) Gp. Denote by K™ n > 0 any coset of G, and call it B-
interval. For a fixed g € G, let K™(g) be the coset of G,, such that g € K" (g),
ie., K"(g) = g+ Gy. For each g € G we have {g} =(),, K"(g). Let u be the
Haar measure on G, normalized so that u(G) = 1.

Let ' be the dual group of G, i.e., the group of characters of the group
G. T is a discrete abelian group with respect to the pointwise multiplication
of characters. It can be represented as a sum of an increasing sequence of
subgroups of finite order:

I'ycl'.ycll.sC...CcI'_, C..

Then I' = U55T_; and NEFT_; = {79} where v(O(g) = 1 for all g € G.
For each n > 0 the group I'_,, is the annulator of G,,, i.e., T_,, = G :={vy €
I':v(g) =1 forall g€ G,}.
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If v € I'_,, then 7 is constant on each coset K" of G,,.
We define a convergence of the series Ever a7y at a point g as the con-
vergence of its partial sums of the form

Sn(9) == > ay(g)

velr—n

when n — oco. Now the quasi-measure associated with the series Z'yEF a7y is
defined on each coset K™ by

F(K") = [ Su(g)dp. (2)
K’n,
F' is an additive function on the family of all B-intervals. Since the sum S5, is
constant on each K", the definition of F(K™) implies
_ F(E"(9)
(K™ (9))
Once again the problem of recovering the coefficients of the series Z'yGF a~y

from its sum is equivalent to the one of recovering the quasi-measure from its
derivative. Indeed we have

Sn(9)

Theorem 2. A series Z’yel‘ a~y s the A-Fourier series of some A-integrable
function f if the quasi-measure F' associated by (2) with this series coincides
on each B-interval K with the indefinite integral (A)f, fdpu.

The problem can be solved by a suitable Henstock-type integral which is
defined below in a more general setting. It turns out that the group structure
is not essential in this theory and we can formulate our problem using a zero-
dimensional metric space instead of a group.

Let a sequence {C),}52; of covers of a zero-dimensional compact metric

space X be given such that

(a) for each fixed n, elements K ;") of C,, are disjoint and clopen;

(b) each element of C,, is properly contained in some element of C,,_1, for
n > 2;

(c) C1 ={X}.

Let K(n,z) be the (unique) element KJ(.ZQ’I) of C,, such that x € KJ('?n,z)'
A sequence {K(n,z)}, is defined for each z so that (), K(n,z) = {z}.

We assume that a Borel probability measure p is given on X. So Z;n:(;l) u(K ](")) =

1. We denote 7 = UZOZI C), and refer to elements of 7 as B-intervals.
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We introduce the set of B-polynomials
P(X) = span{xk : K € I}.

P(X) is a dense linear subspace of C(X). We call elements of P(X)*, the
linear space dual of P(X), quasi-measures. It is easy to understand that in
the case of a zero-dimensional group this new notion of quasi-measure can be
interpreted in the previous way.

If S is a quasi-measure and g € P(X) we denote by (5, g) the value of S
at g.

In particular a function f of L'(u) defines a quasi-measures if we put its
value at g € P(X) to be

(f,9) = (fdu,g) :== /ngdu.

A quasi-measure can be defined by specifying (S, x i) for each K € [J,~;, Ch.
If S is a quasi-measure, x an element of X, and n > 0, we define the n-th
partial sum of the “Fourier series” of S at x to be

For a fixed sequence {C,}>2; and the measure p, we define a derivation
basis B in X as the family of all basis sets

By ={,x):x e X, ] =K(n,z),n>v(x)}.

where v runs over the set of all function v : X — N

A B, -partition is a finite collection w of elements of 3, where the distinct
elements (I’,2') and (I”,2"”) in m have I’ and I" disjoint. If L € Z and
U(I,m)Ew I = L then 7 is called 3,-partition of L.

A Henstock type integral in this setting can be defined as follows (see [3]).

Definition 1. Let L € Z. A real-valued function f on L is said to be Henstock
integrable with respect to basis B (or Hp-integrable) on L, with Hg-integral A,
if for every € > 0, there exists a function v : L — N such that for any 3,-
partition 7 of L we have:

> Hautn) - 4] <.

(I,x)em

We denote the integral value A by (Hg) [, f.
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If a function f is Hp-integrable on L and f = h almost everywhere, then h
is also Hp-integrable and their integrals coincide. This justifies the following
generalization of the previous definition.

Definition 2. A real-valued function f defined almost everywhere on L € 7
is said to be Hp-integrable on L, with integral value A, if the function

fi(z) == { f(z), where fis defined,

0, otherwise
is Hp-integrable on L to A in the sense of Definition 1.

If f is Hp-integrable on L € 7 then it is Hp-integrable also on any
B-interval K C L. So we can define the indefinite Hp-integral F(K) =
(Hp) [ fdp. It is an additive B-interval function on the set of all B-intervals
KCL.

Definition 3. Given a real-valued set function F' on Z we define the upper and
the lower B-derivative at a point x, with respect to the basis B and measure
1, as
— F(K(n,x
DpF(x) :=limsup ——————=
=B (K n,)
and K
DpgF(z) := liminf M,
R (K (n,2)
respectively. If DgF(z) = DgF(z), then F is B-differentiable at the point x
with B-derivative DgF (x) being this common value.

Theorem 3. If a function f is Hg-integrable on a B-interval L then the
indefinite Hg-integral F(I) = (Hg) [, f as an additive function on the set of
all B-subintervals of L, is B-differentiable almost everywhere on L and

DpF(z) = f(xz) a.e. on L.

The above theorem holds for every measure p. Some other properties, in
particular continuity of the indefinite integral, depend on the fact whether p
is non-atomic or not.

Definition 4. A real-valued set function F' defined on Z is B-continuous at a
point  if lim,, o F(K(n,x)) = 0.

Any non-atomic measure p on X is B-continuous at any point. The indef-
inite Hp-integral on L € 7 is B-continuous at each point of L if the measure
4 is non-atomic.

The following results is related to an integral representation of a quasi-
measure by Hp-integral.
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Theorem 4. Suppose that S is a quasi-measure and the measure y is non-
atomic. Let $,(S) and an Hp-integrable function f satisfy the inequality

liminf s, (S, z) < f(x) < limsup s, (S, z)

n—00 n—oo

everywhere on X except on a countable set, where
lim inf (S, X g (n,z)) < 0 < limsup(S, X & (n,x))
n—00 n—00

holds. Then the sequence s, (S, x) is convergent to f almost everywhere and
the quasi-measure S can be represented as

(S.9) = (f.9) = (Hz) /X fg

for each B-polynomial g € P(X).

Corollary 5. Suppose that S is a quasi-measure and the measure [ is non-
atomic. Let s,(S) and an Hg-integrable function f satisfy the inequality

liminf s, (S, z) < f(x) < limsup s, (S, z)
n—oo

n—oo

almost everywhere and the condition
lim sup |s,, (S, z)| < oo
everywhere on X except on a countable set, where

n—00 n—00

holds. Then the sequence s, (S, x) is convergent to f almost everywhere and
the quasi-measure S can be represented as

(S.9) = (f.9) = (Hzs) /X fg

for each g € P(X).

Theorem 6. Let S be a quasi-measure and let s,(S) converge to a function
f everywhere on X outside of a set EU M such that u(E) = 0 with

limsup |5, (5, )| < 0o
n— oo
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everywhere on E and M is a countable set where

nIL%(Sa XK(n,x)) = 0.

Then f is Hp-integrable on X in the sense of Definition 2 and S can be
identified with f so that for each g € P(X)

(S.9) = (f.9) = (Hs) /X fg.

Some of the above results are to be published in [5].
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