Francesco Tulone,* Department of Mathematics and Informatics, Palermo University, Palermo 90123, Italy. email: tulone@math.unipa.it

HENSTOCK- AND PERRON-TYPE INTEGRAL ON A COMPACT ZERO-DIMENSIONAL METRIC SPACE

1 Introduction

A derivation basis and a Henstock-Kurzweil type integral ($H_{\mathcal{B}}$-integral) with respect to this basis on a compact zero-dimensional metric space X were introduced in [6] and [7].

We discuss here also two Perron-types integrals ($P_{\mathcal{B}}$-integral and $P_{\mathcal{B}}^{0}$-integral) with respect to this basis.

The aim of this paper is to prove the following chain of inclusions

$$
L \subset P_{\mathcal{B}}^{0} \subset P_{\mathcal{B}}=H_{\mathcal{B}} \subset P_{\mathcal{B}}^{0}
$$

These results are known for the corresponding integrals with respect to the usual interval basis on the real line. See [2] and [3].

2 Preliminaries

Let a sequence $\left\{C_{n}\right\}_{n=1}^{\infty}$ of covers of a compact zero-dimensional metric space X be given such that
(a) for each fixed n, elements $K_{j}^{(n)}$ of C_{n}, are disjoint and clopen;
(b) each element of C_{n} is properly contained in some element of C_{n-1}, for $n \geq 2$;

[^0](c) $C_{1}=\{X\}$;
(d) $\bigcup_{n=1}^{\infty} C_{n}$ is a base for the topology of X.

Let $C_{n}=\left\{K_{j}^{(n)}\right\}_{j=1}^{m(n)}$. For each $x \in X$ and $n \in \mathbb{N}$ let $K(n, x)$ be the (unique) element $K_{j(n, x)}^{(n)}$ of C_{n} such that $x \in K_{j(n, x)}^{(n)}$. A sequence $\{K(n, x)\}_{n}$ is defined for each x so that (in view of (d))

$$
\bigcap_{n} K(n, x)=\{x\} .
$$

We assume that a Borel probability measure μ is given on X. So, for each fixed n we have

$$
\sum_{j=1}^{m(n)} \mu\left(K_{j}^{(n)}\right)=1
$$

This measure can be extended in a usual way to be a complete measure on X. It is known that this type of measure being a completion of a Borel measure is regular (see [1]).

3 Definitions

For a fixed sequence $\left\{C_{n}\right\}_{n=1}^{\infty}$ and the measure μ, we define a derivation basis \mathcal{B} in X as the family of all sets

$$
\beta_{\nu}:=\{(I, x): x \in X, I=K(n, x), n \geq \nu(x)\}
$$

where ν runs over the set of all functions $\nu: X \rightarrow \mathbb{N}$
Let $\mathcal{I}=\bigcup_{n=1}^{\infty} C_{n}$ and refer to elements of \mathcal{I} as \mathcal{B}-intervals.
This basis has all the usual properties of a general derivation basis (see [3], [8]).
Definition 1. A β_{ν}-partition is a finite collection π of elements of β_{ν}, where distinct elements $\left(I^{\prime}, x^{\prime}\right)$ and $\left(I^{\prime \prime}, x^{\prime \prime}\right)$ in π have I^{\prime} and $I^{\prime \prime}$ disjoint. If $L \in \mathcal{I}$ and $\bigcup_{(I, x) \in \pi} I \subset L$ then π is called β_{ν}-partition in L, if $\bigcup_{(I, x) \in \pi} I=L$ then π is called β_{ν}-partition of L.

Our a basis \mathcal{B} has the partitioning property, i.e.,
i) for each finite collection $I_{0}, I_{1}, \ldots, I_{n}$ of \mathcal{B} - intervals with $I_{1}, \ldots, I_{n} \subset I_{0}$ and $I_{i}, \quad i=1,2, \ldots, n$, being pairwise disjoint, the difference $I_{0} \backslash \bigcup_{i=1}^{n} I_{i}$ can be expressed as a finite union of pairwise disjoint \mathcal{B}-intervals;
ii) for each \mathcal{B}-interval L and for any $\beta_{\nu} \in \mathcal{B}$ there exists a β_{ν}-partition of L.

For a set $E \subset X$ and $\beta_{\nu} \in \mathcal{B}$ we write

$$
\beta_{\nu}(E):=\left\{(I, x) \in \beta_{\nu}: I \subset E\right\}
$$

and

$$
\beta_{\nu}[E]:=\left\{(I, x) \in \beta_{\nu}: x \in E\right\} .
$$

Definition of a Henstock-Kurzweil type integral:
Definition 2. Let $L \in \mathcal{I}$. A real-valued function f on L is said to be HenstockKurzweil integrable with respect to the basis \mathcal{B} (or $H_{\mathcal{B}}$-integrable) on L, with $H_{\mathcal{B}}$-integral A, if for every $\varepsilon>0$, there exists a function $\nu: L \rightarrow \mathbb{N}$ such that for any β_{ν}-partition π of L we have:

$$
\left|\sum_{(I, x) \in \pi} f(x) \mu(I)-A\right|<\varepsilon .
$$

We denote the integral value A by $\left(H_{\mathcal{B}}\right) \int_{L} f$.
If a function f is $H_{\mathcal{B}}$-integrable on X and $f=h$ almost everywhere, then h is also $H_{\mathcal{B}}$-integrable and their integrals coincide. So:

Definition 3. A real-valued function f defined almost everywhere on $L \in \mathcal{I}$ is said to be $H_{\mathcal{B}}$-integrable on L, with integral value A, if the function

$$
f_{1}(g):= \begin{cases}f(g), & \text { where } f \text { is defined, } \\ 0, & \text { otherwise },\end{cases}
$$

is $H_{\mathcal{B}}$-integrable on L to A in the sense of Definition 2.
If f is $H_{\mathcal{B}}$-integrable on $L \in \mathcal{I}$ then it is $H_{\mathcal{B}}$-integrable also on any \mathcal{B} interval $K \subset L$. So we can define the indefinite integral $F(K)=\left(H_{\mathcal{B}}\right) \int_{K} f d \mu$. The indefinite $H_{\mathcal{B}}$-integral F is an additive \mathcal{B}-interval function on the set of all \mathcal{B}-intervals $K \subset L$.

Definition 4. Given a real-valued set function F on \mathcal{I} we define the upper and lower \mathcal{B}-derivative at a point x, with respect to the basis \mathcal{B} and measure μ, as

$$
\bar{D}_{\mathcal{B}} F(x):=\limsup _{n \rightarrow \infty} \frac{F(K(n, x))}{\mu(K(n, x))}
$$

and

$$
\underline{D}_{\mathcal{B}} F(x):=\liminf _{n \rightarrow \infty} \frac{F(K(n, x))}{\mu(K(n, x))},
$$

respectively. If $\bar{D}_{\mathcal{B}} F(x)=\underline{D}_{\mathcal{B}} F(x)$, then F is \mathcal{B}-differentiable at the point x with \mathcal{B}-derivative, $D_{\mathcal{B}} F(x)$ being this common value.

Theorem 1. If a function f is $H_{\mathcal{B}}$-integrable on a \mathcal{B}-interval L then the indefinite $H_{\mathcal{B}}$-integral $F(I)=\left(H_{\mathcal{B}}\right) \int_{I} f$ as an additive function on the set of all \mathcal{B}-subintervals of L, is \mathcal{B}-differentiable almost everywhere on L and

$$
D_{\mathcal{B}} F(x)=f(x) \quad \text { a.e. on } L
$$

The above theorem holds for every measure μ. Some other properties, in particular continuity of the indefinite integral, depend on the fact whether μ is non-atomic or not.

Definition 5. A real-valued set function F defined on \mathcal{I} is \mathcal{B}-continuous at a point x if

$$
\lim _{n \rightarrow \infty} F(K(n, x))=0
$$

Any non-atomic measure μ on X is \mathcal{B}-continuous at any point.
The indefinite $H_{\mathcal{B}}$-integral on $L \in \mathcal{I}$ is \mathcal{B}-continuous at each point of L if the measure μ is non-atomic.

Now we define a Perron type integral with respect to the basis \mathcal{B}.
Definition 6. Let f be a point function on X. A \mathcal{B}-interval function M (resp. m) is called a \mathcal{B}-major (resp. \mathcal{B}-minor) function of f on X if it is superadditive (resp. subadditive) and the lower (resp. upper) \mathcal{B}-derivative satisfies the inequality

$$
\underline{D}_{\mathcal{B}} M(x) \geq f(x) \quad\left(\text { resp. } \bar{D}_{\mathcal{B}} m(x) \leq f(x)\right)
$$

for all $x \in X$. A function f is said to be $P_{\mathcal{B}}$-integrable, if it has at least one \mathcal{B}-major and one \mathcal{B}-minor function and

$$
-\infty<\inf _{M}\{M(X)\}=\sup _{m}\{m(X)\}<+\infty
$$

where "inf" is taken over all \mathcal{B}-major function M and "sup" is taken over all \mathcal{B}-minor function m. The common value is denoted by $\left(P_{\mathcal{B}}\right) \int_{X} f$ and is called $P_{\mathcal{B}}$-integral of f on X.

For any \mathcal{B}-major function M and for any \mathcal{B}-minor function m we have $M(X) \geq m(X)$. This implies the correctness of the previous definition.

In the same way we can define $P_{\mathcal{B}}$-integral on any \mathcal{B}-interval.
If in the above definition we assume all the \mathcal{B} - major and \mathcal{B}-minor functions to be \mathcal{B}-continuous we obtain the definition of $P_{\mathcal{B}^{-}}^{0}$ integral. It is clear that $P_{\mathcal{B}^{-}}^{0}$ integral is included in $P_{\mathcal{B}}$-integral.

Let f be a $P_{\mathcal{B}}$-integrable function on X. Since f is also integrable on each \mathcal{B}-interval $I \subset X$, we can define the indefinite integrals $F(I)=\left(P_{\mathcal{B}}\right) \int_{I} f$ and $F(I)=\left(P_{\mathcal{B}}^{0}\right) \int_{I} f$. The indefinite integral F is an additive \mathcal{B}-interval function on \mathcal{I} in both cases.

In the standard way we can check that $H_{\mathcal{B}}=P_{\mathcal{B}}$.
Similarly to the case of $H_{\mathcal{B}}$-integral the above Perron-type integrals can be defined in the case of functions defined only almost everywhere.

To compare $H_{\mathcal{B}}$-integral with $P_{\mathcal{B}}^{0}$-integral we shall use the notion of variation.

Let F be an additive set function on \mathcal{I}, E an arbitrary fixed subset of X, and A a \mathcal{B} - interval. For a fixed $\beta_{\nu} \in \mathcal{B}$, we set

$$
\begin{gathered}
V_{\nu}(A)=V\left(E, F, \beta_{\nu}, A\right):= \\
\sup \left\{\sum_{(I, g) \in \pi}|F(I)|: \pi \subset \beta_{\nu}[E] \cap \beta_{\nu}(A)\right\}
\end{gathered}
$$

and we call it the β_{ν}-variation of the function F on $E \cap A$. In case $E \cap A=\emptyset$ we define $V_{\nu}(A)=0$. For a fixed $E, V_{\nu}(A)$ is a non negative and superadditive interval function.

4 Main results.

The next theorem can be proved for our basis \mathcal{B} in a similar way as an analogous result in [5] for the particular case of zero-dimensional group.

Theorem 2. Let F be a \mathcal{B}-continuous additive function defined on \mathcal{I} with a finite value $V_{\nu}(X)$. Then for a fixed $E \subset X$ and a fixed function $\nu: X \rightarrow \mathbb{N}$ the \mathcal{B}-interval function $V_{\nu}(A)=V\left(E, F, \beta_{\nu}, A\right)$ is \mathcal{B}-continuous at each point $x \in X$.

The above theorem can be used to construct a \mathcal{B}-continuous major and minor functions for an $H_{\mathcal{B}}$-integrable function.

Theorem 3. Suppose that the measure μ on X is non-atomic and a real-valued function f is $H_{\mathcal{B}}$-integrable on X, with F being its indefinite $H_{\mathcal{B}}$-integral.

Then for any $\varepsilon>0$ there exist a \mathcal{B}-continuous \mathcal{B}-major function M and a \mathcal{B}-continuous \mathcal{B}-minor function m of f such that

$$
M(X)-F(X)<\varepsilon \text { and } F(X)-m(X)<\varepsilon
$$

The idea of proof is the following:
Let $E=X \backslash C$ where $C=\left\{x \in X: D_{\mathcal{B}} F(x)=f(x)\right\}, \mu(E)=0$. For this E and for $\varepsilon>0$ we can choose ν such that

$$
V_{\nu}(X)=V\left(E, F, \beta_{\nu}, X\right)<\varepsilon
$$

By Theorem 2, the \mathcal{B}-interval function $V_{\nu}(A)=V\left(E, F, \beta_{\nu}, A\right)$ is \mathcal{B}-continuous at each point x of X. Then the functions

$$
M(A)=F(A)+V_{\nu}(A) \text { and } m(A)=F(A)-V_{\nu}(A)
$$

are the major and minor function we are looking for.
Using the previous theorem we obtain for the case of non-atomic measure μ the following scheme

$$
P_{\mathcal{B}}^{0} \subset P_{\mathcal{B}}=H_{\mathcal{B}} \subset P_{\mathcal{B}}^{0}
$$

So we have
Theorem 4. If measure μ is non-atomic, then $H_{\mathcal{B}}$-integral is equivalent to both $P_{\mathcal{B}^{-}}$and $P_{\mathcal{B}^{0}}^{0}$-integral.

In particular we have got that for non-atomic measure μ and for our basis \mathcal{B}, the $P_{\mathcal{B}^{-}}^{0}$ and $P_{\mathcal{B}}$-integral are equivalent. We note that for a general basis the problem about the equivalence of the above Perron type integrals is still open.

Now to complete the chain of inclusions we prove for non atomic measure $L \subset P_{\mathcal{B}}^{0}$.

We need the following version of Vitali-Caratheodory theorem which is proved in [4, Chapter III, Theorem 7.6] for functions defined on \mathbb{R}^{m} but the same proof can be used for functions defined on any compact metric space with a regular measure on it.

Theorem 5. Given a real-valued summable function f on a compact metric space X with a regular measure μ and any $\varepsilon>0$, there exist a summable lower semi-continuous function l and a summable upper semi-continuous function u such that

$$
\begin{gathered}
l(x) \geq f(x) \geq u(x) \text { at each point } x \in X \\
\int_{X}[l(x)-f(x)] d \mu<\varepsilon \text { and } \int_{X}[f(x)-u(x)] d \mu<\varepsilon
\end{gathered}
$$

Theorem 6. Let f be a real-valued summable function on a zero-dimensional compact metric space X with non-atomic regular measure μ. Then for any ε there exists a \mathcal{B}-continuous major function M and a \mathcal{B}-continuous minor function m such that $M(X)-\int_{X} f d \mu<\varepsilon$ and $\int_{X} f d \mu-m(X)<\varepsilon$.

For the proof it is enough to put $M(I)=\int_{I} l d \mu$ and $m(I)=\int_{I} u d \mu$ where l and u are taken from the Vitali-Caratheodory theorem.

5 Quasi measure.

We introduce the set of \mathcal{B}-polynomials

$$
P_{X}=\operatorname{span}\left\{\chi_{K}: K \in \mathcal{I}\right\} .
$$

$P(X)$ is a dense linear subspace of $C(X)$. We call elements of $P(X)^{\star}$, the linear space dual of $P(X)$, quasi-measures. If S is a quasi-measure and $g \in P(X)$ we denote by (S, g) the value of S at g.

A quasi-measure can be defined by specifying $\left(S, \chi_{K}\right)$ for all $K \in \bigcup_{n=0}^{\infty} C_{n}$.
If S is a quasi-measure, x an element of X, and $n \geq 0$, we define the nth partial sum of the "Fourier series" of S at x to be

$$
s_{n}(S, x)=s_{n}(S)(x):=\left(S, \chi_{K(n, x)}\right) / \mu(K(n, x))
$$

The result related to an integral representation of a quasi-measure by the L-integral:

Theorem 7. Suppose that S is a quasi-measure. Let $s_{n}(S)$ and an L-integrable function f satisfy the inequality

$$
\liminf _{n \rightarrow \infty} s_{n}(S, x) \leq f(x) \leq \limsup _{n \rightarrow \infty} s_{n}(S, x)
$$

everywhere on X. Then the sequence $s_{n}(S, x)$ is convergent to f a.e. and the quasi measure S can be represented as $(S, g)=(f, g)=(L) \int_{X} f g$ for each \mathcal{B}-polynomial $g \in P(X)$.

The main results of this paper will be published in [9].

References

[1] V. I. Bogachev, Foundations of measure theory, vol. 2. (Russian) MoscowIzhevsk, 2003.
[2] T. P. Lukashenko, V. A. Skvortsov, A. P. Solodov, Generalized integrals, URSS, Moscow, 2009.
[3] K. M. Ostaszewski, Henstock integration in the plane, Memoirs of the AMS, Providence, 63, no. 353, 1986.
[4] S. Saks, Theory of the integral, Dover, New York, 1964.
[5] V. A. Skvortsov, F. Tulone, On the Perron-type integral on a compact zero-dimensional abelian group, Vestnik Moskov. Gos. Univ. Ser. I Mat. Mekh., 72, no. 3 (2008), 37-42; Engl. transl. in Moscow Univ. Math. Bull., 63, no. 3 (2008), 119-124.
[6] V. A.Skvortsov, F. Tulone: Henstock Type Integral on a Compact ZeroDimensional Metric Space and Representation of Quasi-Measure, Moscow Univ. Math. Bull. (to be published).
[7] V. A. Skvortsov, F. Tulone, Representation of quasi-measure by HenstockKurzweil type integral on a compact-zero dimensional metric space, Georgian Mathematical Journal, 16, no. 3 (2009), 575-582.
[8] B. S. Thomson, Derivation bases on the real line, Real Anal. Exchange 8 (1982/83), 67-207 and 278-442.
[9] F. Tulone: Generality of Henstock-Kurzweil type integral on a compact zero-dimensional metric space, Tatra Mountains Mathematical Publications (to be published).

[^0]: Mathematical Reviews subject classification: Primary: 26A39
 Key words: Henstock-Kurzweil integral, Perron integral, Lebesgue integral, derivation basis, compact zero-dimensional metric space, major and minor function
 *The research for this paper was supported by "Potenziamento alla Ricerca".

