Francesco Tulone,* Department of Mathematics and Informatics, Palermo University, Palermo 90123, Italy. email: tulone@math.unipa.it

HENSTOCK- AND PERRON-TYPE INTEGRAL ON A COMPACT ZERO-DIMENSIONAL METRIC SPACE

1 Introduction

A derivation basis and a Henstock-Kurzweil type integral ($H_{\mathcal{B}}$ -integral) with respect to this basis on a compact zero-dimensional metric space X were introduced in [6] and [7].

We discuss here also two Perron-types integrals ($P_{\mathcal{B}}$ -integral and $P_{\mathcal{B}}^{0}$ -integral) with respect to this basis.

The aim of this paper is to prove the following chain of inclusions

$$L \subset P^0_{\mathcal{B}} \subset P_{\mathcal{B}} = H_{\mathcal{B}} \subset P^0_{\mathcal{B}}.$$

These results are known for the corresponding integrals with respect to the usual interval basis on the real line. See [2] and [3].

Preliminaries $\mathbf{2}$

Let a sequence $\{C_n\}_{n=1}^{\infty}$ of covers of a compact zero-dimensional metric space X be given such that

- (a) for each fixed n, elements $K_i^{(n)}$ of C_n , are disjoint and clopen;
- (b) each element of C_n is properly contained in some element of C_{n-1} , for $n \geq 2;$

Mathematical Reviews subject classification: Primary: 26A39

Key words: Henstock-Kurzweil integral, Perron integral, Lebesgue integral, derivation basis, compact zero-dimensional metric space, major and minor function *The research for this paper was supported by "Potenziamento alla Ricerca".

⁹²

(c) $C_1 = \{X\};$

(d) $\bigcup_{n=1}^{\infty} C_n$ is a base for the topology of X.

Let $C_n = \left\{K_j^{(n)}\right\}_{j=1}^{m(n)}$. For each $x \in X$ and $n \in \mathbb{N}$ let K(n,x) be the (unique) element $K_{j(n,x)}^{(n)}$ of C_n such that $x \in K_{j(n,x)}^{(n)}$. A sequence $\{K(n,x)\}_n$ is defined for each x so that (in view of (d))

$$\bigcap_n K(n,x) = \{x\}$$

We assume that a Borel probability measure μ is given on X. So, for each fixed n we have

$$\sum_{j=1}^{m(n)} \mu(K_j^{(n)}) = 1.$$

This measure can be extended in a usual way to be a complete measure on X. It is known that this type of measure being a completion of a Borel measure is regular (see [1]).

3 Definitions

For a fixed sequence $\{C_n\}_{n=1}^{\infty}$ and the measure μ , we define a *derivation basis* \mathcal{B} in X as the family of all sets

$$\beta_{\nu} := \{ (I, x) : x \in X, I = K(n, x), n \ge \nu(x) \}$$

where ν runs over the set of all functions $\nu: X \to \mathbb{N}$

Let $\mathcal{I} = \bigcup_{n=1}^{\infty} C_n$ and refer to elements of \mathcal{I} as \mathcal{B} -intervals.

This basis has all the usual properties of a general derivation basis (see [3], [8]).

Definition 1. A β_{ν} -partition is a finite collection π of elements of β_{ν} , where distinct elements (I', x') and (I'', x'') in π have I' and I'' disjoint. If $L \in \mathcal{I}$ and $\bigcup_{(I,x)\in\pi} I \subset L$ then π is called β_{ν} -partition in L, if $\bigcup_{(I,x)\in\pi} I = L$ then π is called β_{ν} -partition of L.

Our a basis \mathcal{B} has the *partitioning property*, i.e.,

i) for each finite collection I_0, I_1, \ldots, I_n of \mathcal{B} - intervals with $I_1, \ldots, I_n \subset I_0$ and $I_i, i = 1, 2, \ldots, n$, being pairwise disjoint, the difference $I_0 \setminus \bigcup_{i=1}^n I_i$ can be expressed as a finite union of pairwise disjoint \mathcal{B} -intervals; ii) for each \mathcal{B} -interval L and for any $\beta_{\nu} \in \mathcal{B}$ there exists a β_{ν} -partition of L.

For a set $E \subset X$ and $\beta_{\nu} \in \mathcal{B}$ we write

$$\beta_{\nu}(E) := \{ (I, x) \in \beta_{\nu} : I \subset E \}$$

and

$$\beta_{\nu}[E] := \{ (I, x) \in \beta_{\nu} : x \in E \}.$$

Definition of a Henstock-Kurzweil type integral:

Definition 2. Let $L \in \mathcal{I}$. A real-valued function f on L is said to be *Henstock-Kurzweil integrable with respect to the basis* \mathcal{B} (or $H_{\mathcal{B}}$ -integrable) on L, with $H_{\mathcal{B}}$ -integral A, if for every $\varepsilon > 0$, there exists a function $\nu : L \to \mathbb{N}$ such that for any β_{ν} -partition π of L we have:

$$\left|\sum_{(I,x)\in\pi}f(x)\mu(I)-A\right|<\varepsilon.$$

.

We denote the integral value A by $(H_{\mathcal{B}}) \int_L f$.

If a function f is $H_{\mathcal{B}}$ -integrable on X and f = h almost everywhere, then h is also $H_{\mathcal{B}}$ -integrable and their integrals coincide. So:

Definition 3. A real-valued function f defined almost everywhere on $L \in \mathcal{I}$ is said to be $H_{\mathcal{B}}$ -integrable on L, with integral value A, if the function

$$f_1(g) := \begin{cases} f(g), & \text{where } f \text{ is defined,} \\ 0, & \text{otherwise,} \end{cases}$$

is $H_{\mathcal{B}}$ -integrable on L to A in the sense of Definition 2.

If f is $H_{\mathcal{B}}$ -integrable on $L \in \mathcal{I}$ then it is $H_{\mathcal{B}}$ -integrable also on any \mathcal{B} interval $K \subset L$. So we can define the indefinite integral $F(K) = (H_{\mathcal{B}}) \int_{K} f d\mu$. The indefinite $H_{\mathcal{B}}$ -integral F is an additive \mathcal{B} -interval function on the set of all \mathcal{B} -intervals $K \subset L$.

Definition 4. Given a real-valued set function F on \mathcal{I} we define the *upper* and *lower* \mathcal{B} -*derivative* at a point x, with respect to the basis \mathcal{B} and measure μ , as

$$\overline{D}_{\mathcal{B}}F(x) := \limsup_{n \to \infty} \frac{F(K(n, x))}{\mu(K(n, x))}$$

94

and

$$\underline{D}_{\mathcal{B}}F(x) := \liminf_{n \to \infty} \frac{F(K(n, x))}{\mu(K(n, x))},$$

respectively. If $\overline{D}_{\mathcal{B}}F(x) = \underline{D}_{\mathcal{B}}F(x)$, then F is \mathcal{B} -differentiable at the point x with \mathcal{B} -derivative, $D_{\mathcal{B}}F(x)$ being this common value.

Theorem 1. If a function f is $H_{\mathcal{B}}$ -integrable on a \mathcal{B} -interval L then the indefinite $H_{\mathcal{B}}$ -integral $F(I) = (H_{\mathcal{B}}) \int_{I} f$ as an additive function on the set of all \mathcal{B} -subintervals of L, is \mathcal{B} -differentiable almost everywhere on L and

$$D_{\mathcal{B}}F(x) = f(x)$$
 a.e. on L.

The above theorem holds for every measure μ . Some other properties, in particular continuity of the indefinite integral, depend on the fact whether μ is non-atomic or not.

Definition 5. A real-valued set function F defined on \mathcal{I} is \mathcal{B} -continuous at a point x if

$$\lim_{n \to \infty} F(K(n, x)) = 0.$$

Any non-atomic measure μ on X is \mathcal{B} -continuous at any point.

The indefinite $H_{\mathcal{B}}$ -integral on $L \in \mathcal{I}$ is \mathcal{B} -continuous at each point of L if the measure μ is non-atomic.

Now we define a Perron type integral with respect to the basis \mathcal{B} .

Definition 6. Let f be a point function on X. A \mathcal{B} -interval function M (resp. m) is called a \mathcal{B} -major (resp. \mathcal{B} -minor) function of f on X if it is superadditive (resp. subadditive) and the lower (resp. upper) \mathcal{B} -derivative satisfies the inequality

$$\underline{D}_{\mathcal{B}}M(x) \ge f(x) \quad (\text{resp. } \overline{D}_{\mathcal{B}}m(x) \le f(x))$$

for all $x \in X$. A function f is said to be $P_{\mathcal{B}}$ -integrable, if it has at least one \mathcal{B} -major and one \mathcal{B} -minor function and

$$-\infty < \inf_M \{M(X)\} = \sup_m \{m(X)\} < +\infty$$

where "inf" is taken over all \mathcal{B} -major function M and "sup" is taken over all \mathcal{B} -minor function m. The common value is denoted by $(P_{\mathcal{B}}) \int_X f$ and is called $P_{\mathcal{B}}$ -integral of f on X.

For any \mathcal{B} -major function M and for any \mathcal{B} -minor function m we have $M(X) \ge m(X)$. This implies the correctness of the previous definition.

In the same way we can define $P_{\mathcal{B}}$ -integral on any \mathcal{B} -interval.

If in the above definition we assume all the \mathcal{B} - major and \mathcal{B} -minor functions to be \mathcal{B} -continuous we obtain the definition of $P^0_{\mathcal{B}}$ -integral. It is clear that $P^0_{\mathcal{B}}$ integral is included in $P_{\mathcal{B}}$ -integral.

Let f be a $P_{\mathcal{B}}$ -integrable function on X. Since f is also integrable on each \mathcal{B} -interval $I \subset X$, we can define the indefinite integrals $F(I) = (P_{\mathcal{B}}) \int_{I} f$ and $F(I) = (P_{\mathcal{B}}) \int_{I} f$. The indefinite integral F is an additive \mathcal{B} -interval function on \mathcal{I} in both cases.

In the standard way we can check that $H_{\mathcal{B}} = P_{\mathcal{B}}$.

Similarly to the case of $H_{\mathcal{B}}$ -integral the above Perron-type integrals can be defined in the case of functions defined only almost everywhere.

To compare $H_{\mathcal{B}}$ -integral with $P^0_{\mathcal{B}}$ -integral we shall use the notion of variation.

Let F be an additive set function on \mathcal{I} , E an arbitrary fixed subset of X, and $A \neq \mathcal{B}$ - interval. For a fixed $\beta_{\nu} \in \mathcal{B}$, we set

$$V_{\nu}(A) = V(E, F, \beta_{\nu}, A) :=$$
$$\sup\left\{\sum_{(I,g)\in\pi} |F(I)| : \pi \subset \beta_{\nu}[E] \cap \beta_{\nu}(A)\right\}$$

and we call it the β_{ν} -variation of the function F on $E \cap A$. In case $E \cap A = \emptyset$ we define $V_{\nu}(A) = 0$. For a fixed $E, V_{\nu}(A)$ is a non negative and superadditive interval function.

4 Main results.

The next theorem can be proved for our basis \mathcal{B} in a similar way as an analogous result in [5] for the particular case of zero-dimensional group.

Theorem 2. Let F be a \mathcal{B} -continuous additive function defined on \mathcal{I} with a finite value $V_{\nu}(X)$. Then for a fixed $E \subset X$ and a fixed function $\nu : X \to \mathbb{N}$ the \mathcal{B} -interval function $V_{\nu}(A) = V(E, F, \beta_{\nu}, A)$ is \mathcal{B} -continuous at each point $x \in X$.

The above theorem can be used to construct a \mathcal{B} -continuous major and minor functions for an $H_{\mathcal{B}}$ -integrable function.

Theorem 3. Suppose that the measure μ on X is non-atomic and a real-valued function f is $H_{\mathcal{B}}$ -integrable on X, with F being its indefinite $H_{\mathcal{B}}$ -integral.

Then for any $\varepsilon > 0$ there exist a \mathcal{B} -continuous \mathcal{B} -major function M and a \mathcal{B} -continuous \mathcal{B} -minor function m of f such that

$$M(X) - F(X) < \varepsilon$$
 and $F(X) - m(X) < \varepsilon$.

The idea of proof is the following:

Let $E = X \setminus C$ where $C = \{x \in X : D_{\mathcal{B}}F(x) = f(x)\}, \mu(E) = 0$. For this E and for $\varepsilon > 0$ we can choose ν such that

$$V_{\nu}(X) = V(E, F, \beta_{\nu}, X) < \varepsilon$$

By Theorem 2, the \mathcal{B} -interval function $V_{\nu}(A) = V(E, F, \beta_{\nu}, A)$ is \mathcal{B} -continuous at each point x of X. Then the functions

$$M(A) = F(A) + V_{\nu}(A)$$
 and $m(A) = F(A) - V_{\nu}(A)$

are the major and minor function we are looking for.

Using the previous theorem we obtain for the case of non-atomic measure μ the following scheme

$$P^0_{\mathcal{B}} \subset P_{\mathcal{B}} = H_{\mathcal{B}} \subset P^0_{\mathcal{B}}.$$

So we have

Theorem 4. If measure μ is non-atomic, then $H_{\mathcal{B}}$ -integral is equivalent to both $P_{\mathcal{B}}$ - and $P_{\mathcal{B}}^0$ -integral.

In particular we have got that for non-atomic measure μ and for our basis \mathcal{B} , the $P_{\mathcal{B}}^{0}$ - and $P_{\mathcal{B}}$ -integral are equivalent. We note that for a general basis the problem about the equivalence of the above Perron type integrals is still open.

Now to complete the chain of inclusions we prove for non atomic measure $L \subset P_B^0$.

We need the following version of Vitali-Caratheodory theorem which is proved in [4, Chapter III, Theorem 7.6] for functions defined on \mathbb{R}^m but the same proof can be used for functions defined on any compact metric space with a regular measure on it.

Theorem 5. Given a real-valued summable function f on a compact metric space X with a regular measure μ and any $\varepsilon > 0$, there exist a summable lower semi-continuous function l and a summable upper semi-continuous function u such that

$$\begin{split} l(x) &\geq f(x) \geq u(x) \text{ at each point } x \in X, \\ \int_X [l(x) - f(x)] d\mu < \varepsilon \text{ and } \int_X [f(x) - u(x)] d\mu < \varepsilon. \end{split}$$

Theorem 6. Let f be a real-valued summable function on a zero-dimensional compact metric space X with non-atomic regular measure μ . Then for any ε there exists a \mathcal{B} -continuous major function M and a \mathcal{B} -continuous minor function m such that $M(X) - \int_X f d\mu < \varepsilon$ and $\int_X f d\mu - m(X) < \varepsilon$.

For the proof it is enough to put $M(I) = \int_I l d\mu$ and $m(I) = \int_I u d\mu$ where l and u are taken from the Vitali-Caratheodory theorem.

5 Quasi measure.

We introduce the set of \mathcal{B} -polynomials

$$P_X = span\{\chi_K : K \in \mathcal{I}\}.$$

P(X) is a dense linear subspace of C(X). We call elements of $P(X)^*$, the linear space dual of P(X), quasi-measures. If S is a quasi-measure and $g \in P(X)$ we denote by (S,g) the value of S at g.

A quasi-measure can be defined by specifying (S, χ_K) for all $K \in \bigcup_{n=0}^{\infty} C_n$.

If S is a quasi-measure, x an element of X, and $n \ge 0$, we define the nth partial sum of the "Fourier series" of S at x to be

$$s_n(S, x) = s_n(S)(x) := (S, \chi_{K(n,x)})/\mu(K(n,x)).$$

The result related to an integral representation of a quasi-measure by the L-integral:

Theorem 7. Suppose that S is a quasi-measure. Let $s_n(S)$ and an L-integrable function f satisfy the inequality

$$\liminf_{n \to \infty} s_n(S, x) \le f(x) \le \limsup_{n \to \infty} s_n(S, x)$$

everywhere on X. Then the sequence $s_n(S, x)$ is convergent to f a.e. and the quasi measure S can be represented as $(S,g) = (f,g) = (L) \int_X fg$ for each \mathcal{B} -polynomial $g \in P(X)$.

The main results of this paper will be published in [9].

References

 V. I. Bogachev, Foundations of measure theory, vol. 2. (Russian) Moscow-Izhevsk, 2003.

- [2] T. P. Lukashenko, V. A. Skvortsov, A. P. Solodov, *Generalized integrals*, URSS, Moscow, 2009.
- [3] K. M. Ostaszewski, *Henstock integration in the plane*, Memoirs of the AMS, Providence, 63, no. 353, 1986.
- [4] S. Saks, *Theory of the integral*, Dover, New York, 1964.
- [5] V. A. Skvortsov, F. Tulone, On the Perron-type integral on a compact zero-dimensional abelian group, Vestnik Moskov. Gos. Univ. Ser. I Mat. Mekh., 72, no. 3 (2008), 37-42; Engl. transl. in Moscow Univ. Math. Bull., 63, no. 3 (2008), 119-124.
- [6] V. A.Skvortsov, F. Tulone: Henstock Type Integral on a Compact Zero-Dimensional Metric Space and Representation of Quasi-Measure, Moscow Univ. Math. Bull. (to be published).
- [7] V. A. Skvortsov, F. Tulone, Representation of quasi-measure by Henstock-Kurzweil type integral on a compact-zero dimensional metric space, Georgian Mathematical Journal, 16, no. 3 (2009), 575-582.
- [8] B. S. Thomson, Derivation bases on the real line, Real Anal. Exchange 8 (1982/83), 67-207 and 278-442.
- [9] F. Tulone: Generality of Henstock-Kurzweil type integral on a compact zero-dimensional metric space, Tatra Mountains Mathematical Publications (to be published).