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CHAOS AMONG SELF-MAPS OF AN
n-DIMENSIONAL MANIFOLD AND OF THE

CANTOR SPACE

1 Introduction

Chaos is a concept of considerable interest and importance in dynamical sys-
tems. We focus on three main notions of chaos: positive topological entropy,
chaos according to Devaney and chaos according to Li-Yorke. We provide an
overview of these types of chaos for self-maps of n-dimensional manifolds and
of the Cantor space, and of the generic behavior, reporting well-known and
recent results.

Here is how we proceed:

Section 1 is dedicated to preliminary definitions, with particular attention
to minimal sets and adding machines, and to basic results. The study of
the structure of ω-limit sets is fundamental in order to understand the chaotic
nature of the generating function and how it is affected by slight perturbations.
Adding machines (also referred to as solenoids or odometers) occur abundantly
as ω-limit sets. They are all Cantor sets topologically. They are a type of
infinite minimal sets. Minimal sets were defined by G.D. Birkhoff [5] and are
very interesting and important in dynamical systems.

Agronsky, Bruckner and Laczkovich show in [3] that given a generic con-
tinuous self-map f of the unit interval I = [0, 1] there is a residual set of points
x in I for which the ω-limit set ω(x, f) is a Cantor set. Using a much different
approach, Lehning extends these results to continuous self-maps of any com-
pact n-dimensional manifold [23]. In [25] Steele goes a step further by showing
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that, on the interval, a generic ordered pair (x, f) gives rise to an ω-limit set
generated by an adding machine. Continuing this line of enquiry, in [13], it is
shown that there is a residual set of points (x, f) in M × C(M,M), where M
is an n-dimensional manifold or the Cantor space, for which ω(x, f) is a par-
ticular α-adic adding machine of type ∞, and that if M is an n-dimensional
manifold with the fixed point property a generic element of C(M,M) gener-
ates uncountably many distinct α-adic adding machines for every possible α.
Hence, adding machines, that are very nice dynamical systems and far from
being chaotic in any sense whatsoever, appear very frequently. Therefore,
chaos cannot be detected pointwise.

In Section 2 we recall the three notions of chaos, positive topological en-
tropy, Devaney chaos and Li-Yorke chaos, and their (eventual) relations.

We end with Section 3, where we report some recent results concerning
Devaney chaos, obtained jointly with U.B. Darji.

2 Some preliminary notions and basic results

Let X be a compact metric space. By C(X) = C(X,X) we denote the space
of all continuous functions from X into X, endowed with the sup norm ‖ · ‖.

Definition 2.1. Let x ∈ X and f ∈ C(X). The trajectory of x under f is

γ(x, f) ≡ {fk(x)}k≥0

and the ω-limit set of f at x is

ω(x, f) ≡ ∩m≥0(∪k≥mfk(x)).

Topological conjugation

([7]: page 18) Let X and Y be metric spaces, and let f : X → X and
g : Y → Y be continuous maps. The maps f and g are said to be topologically
conjugate if there exists a homemorphism h : X → Y of X onto Y such that
h ◦ f = g ◦ h.

The concept of topological conjugation is fundamental since topologically
conjugate maps have essentially the same properties.

Minimal sets
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([7]: page 91) Let f ∈ C(X). A subset of X is minimal for f if it is non-
empty, closed and invariant and no proper subset has these three properties.

Theorem 2.2. ([7]: Lemma V.1) Let f ∈ C(X). A non-empty set T ⊆ X is
minimal if and only if ω(x, f) = T for every x ∈ T .

Remark 2.3. A finite set is a minimal set if and only if it is a periodic orbit.

Adding machines

The terminology is borrowed from [8]. If α ∈ (N \ {1})N , set

∆α =

∞∏
i=1

Zα(i),

where Zk = {0, . . . , k − 1}.
Instead of the usual coordinate-wise addition, we add two elements of ∆α with
“carry over” to the right. More precisely,

(x1, x2, . . .) and (y1, y2, . . .) in ∆α ⇒

(x1, x2, . . .) + (y1, y2, . . .) = (z1, z2, . . .),

where
z1 = (x1 + y1)mod(α(1))

and, in general,
zi = xi + yi + εi−1mod(α(i))

where

εi−1 =

{
0 if xi−1 + yi−1 + εi−2 < α(i− 1)
1 otherwise.

If we let fα be the “+1” map, that is

fα(x1, x2, . . .) = (x1, x2, . . .) + (1, 0, 0, . . .),

then (∆α, fα) is a dynamical system known in various contexts as a α-adic
solenoid, adding machine or odometer.

Definition 2.4. [8] Let α ∈ (N \ {1})N . Let Mα from the set of primes into
N ∪ {∞} be defined as follows. For each prime p, let

Mα(p) =

∞∑
i=1

n(i),

where n(i) is the largest power of p which divides α(i).
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In the following theorem Block and Keesling characterize adding machines
up to topological conjugacy [8].

Theorem 2.5. [8] Let α, β ∈ (N \ {1})N . Then fα and fβ are topologically
conjugate if and only if Mα = Mβ.

Definition 2.6. ([13], [14]) We call odometers of type ∞ those odometers
associated with those α for which Mα(p) =∞ for all p.

The next result, due to Block and Keesling [8], is essential to the proofs of
Theorem 2.8 and Theorem 2.9 stating the “abundance” of adding machines in
dynamical systems.

Theorem 2.7. [8] Let α, β ∈ (N \ {1})N , mi = α(1)α(2) . . . α(i), for each i,
and f : X → X a continuous map of a compact topological space X. Then f
is topologically conjugate to fα if and only if (1), (2), and (3) hold.
(1) For each positive integer i, there is a cover Pi of X consisting of mi pair-
wise disjoint, nonempty, clopen sets which are cyclically permuted by f .
(2) For each positive integer i, Pi+1 partitions Pi.
(3) If W1 ⊃W2 ⊃W3 ⊃ . . . is a nested sequence with Wi ∈ Pi for each i, then
∩∞i=1Wi consists of a single point.

Moreover, in this case statement (4) also holds.

(4) X is metrizable and if mesh(Pi) denotes the maximum diameter of an
element of the cover Pi, then mesh(Pi)→ 0 as i→∞.

The abundance of adding machines

The two following results can be viewed as an extension of [3], [23] and [25],
as the structure of the adding machines generated by a generic continuous self-
map of M where M is a n-manifold or the Cantor space is analyzed.

Theorem 2.8. [13] The set {(x, f) ∈M × C(M,M) : ω(x, f)
is an odometer of type ∞} is residual in M × C(M,M).

Theorem 2.9. [13] Let M be an n-manifold with the fixed point property. A
generic f ∈ C(M,M) has the property that for each α ∈ (N \ {1})N there are
continuum many pairwise disjoint ω-limit sets of f such that are topologically
conjugate to (∆α, fα).

Remark 2.10. Adding machines are very nice dynamical systems and far
from being chaotic in any sense whatsoever. As Theorem 2.8 and Theorem
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2.9 show, a generic map exhibits adding machine-like behavior at most points,
so we have that chaos is a phenomenon which cannot be captured pointwise.

3 Chaos

Three notions of chaos and their (eventual) relations

We now focus our attention on three important notions of chaos: positive
topological entropy, chaos according to Devaney and chaos according to Li-
Yorke.

Topological entropy

([9]; [16]; [12]) Let (X, d) be a compact metric space and f : X → X be a
continuous map. For each natural number n, a new metric dn is defined on X
by the formula

dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n}.

A subset E of X is said to be (n, ε, f)-separated if each pair of distinct
points of E is at least ε apart in the metric dn. Denote by N(n, ε, f) the
maximum cardinality of an (n, ε, f)-separated set. The topological entropy of
the map f is defined by

ent(f) = lim
ε→0

(
lim sup
n→∞

1

n
logN(n, ε, f)

)
.

We recall [10] that in the above we may use lim inf, i.e.,

ent(f) = lim
ε→0

(
lim inf
n→∞

1

n
logN(n, ε, f)

)
.

Devaney Chaos

([15]; [18]; [12]) The system (X, f), where X has no isolated points, is chaotic
according to Devaney if the mapping f is transitive and periodic points of f
are dense in X. Often this definition is somewhat rigid so one only requires
these properties on a subsystem, i.e., there is a perfect set Y ⊆ X such that
f |Y , the restriction of f to Y , is Devaney chaotic.

Li-Yorke chaos
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([24]; [12]) The system (X, f) f is chaotic according to Li-Yorke if there is an
uncountable scrambled set S, i.e., for all distinct points x, y ∈ S we have that

lim inf
n→∞

d(fn(x), fn(y)) = 0

and

lim sup
n→∞

d(fn(x), fn(y)) > 0.

On the unit interval the following implications hold:

ent(f) > 0

⇔ f Devaney chaotic on a subsystem

⇒ f Li-Yorke chaotic

In the case of a complete metric space with no isolated points, Huang and Ye
[20] have proved

f Devaney chaotic⇒ f Li-Yorke chaotic

and Blanchard, Glasner, Kolyada, and Maass [6] have settled a longstanding
problem by proving the following implication

h(f) > 0⇒ f Li-Yorke chaotic

Remark 3.1. In the general setting of compact metric spaces there are no
implications between positive topological entropy and Devaney chaos on a sub-
system.

Recently, many authors have considered both: the space H(X), the set of
all homeomorphisms of X and the space C(X). As in these spaces the Baire
category theorem holds, they have asked what type of dynamical behavior is
exhibited by a generic homeomorphism or a generic continuous map. Some of
them are recalled below. (We also mention that generic homeomorphisms are
deeply studied in the monograph by Akin, Hurley an Kennedy [2]).

Remark 3.2. The situation on the interval is well-known. Of course, a home-
omorphism of the interval is not chaotic in any sense. A generic continu-
ous self-map of the interval has infinite topological entropy and therefore it is
chaotic on a Devaney subsystem and chaotic according to Li-Yorke [7].
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Theorem 3.3. [26] A generic homeomorphism of a manifold of dimension
at least 2 has the property that it has infinite topological entropy. The same
result holds for a generic continuous self-map of a manifold of dimension at
least 2.

Remark 3.4. The idea of Yano was to show that a generic element of these
spaces contains a horseshoe type structure.

Theorem 3.5. [17] A generic homeomorphism of Sd, 2 ≤ d ≤ ∞, has infinite
topological entropy.

Theorem 3.6. [17] A generic homeomorphism of the Cantor space has zero
topological entropy.

Theorem 3.7. [22] A generic homeomorphism of a manifold of dimension d,
2 ≤ d < ∞, has the property that some power of it is semi-conjugate to the
shift map and has infinite topological entropy.

Theorem 3.8. [19] A generic transitive homeomorphism of the Cantor space
is conjugate to the universal adding machine and hence has zero topological
entropy..

Following the work of [1], [21], Daalderop and Fokkink [11] showed that

Theorem 3.9. A generic measure-preserving homeomorphisms on a compact
d-dimensional manifold, d ≥ 2, is chaotic in the sense of Devaney.

4 More on chaos on the Cantor Space

Recently, in a joint work with U.B. Darji [12], we have answered (see Theorem
4.5) the following natural

Query: what about Devaney chaos for a generic continuous map on the
Cantor space?

In particular, we have shown that there is a dense subset of the space of
all continuous self-maps of the Cantor space each element of which has infinite
topological entropy and is Devaney chaotic on a subsystem and that, however,
a generic continuous map of the Cantor space is neither Devaney chaotic nor
Devaney chaotic on any subsystem and has zero topological entropy.

Here are the main results in [12]:
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Proposition 4.1. [12] The collection

E = {f ∈ C(X) : ent(f) = +∞}

is dense.

Theorem 4.2. [12] The collection Z = {f ∈ C(X) : ent(f) = 0} is a dense
Gδ.

For each f ∈ C(X) and k, let Pk(f) = {x : fk(x) = x}.

Proposition 4.3. [12] Let Ak = {f ∈ C(X) : Pk(f) 6= ∅}. Then, Ak is
closed. Moreover, in the case when X is the Cantor space, Ak is nowhere
dense.

Corollary 4.4. [12] A generic continuous self-map of the Cantor space has
no periodic points.

Theorem 4.5. [12] A generic continuous self-map of the Cantor space has
no periodic points and hence it is not Devaney chaotic on any subsystem.
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