Stanisław Kowalczyk , Academia Pomeraniensis in Slupsk Institute of Mathematics ul. Arciszewskiego 22a, 72-200 Slupsk, Poland . email: stkowalcz@onet.eu

ON THE ω -PROBLEM

Let (X, \mathcal{T}) be any T_1 topological space. Given a function $F: X \to \mathbb{R}$ and $x \in X$ we define an oscillation of f at x by $\omega(F, x) = \inf_{U} \sup_{x_1, x_2 \in U} |F(x_1) - F(x_2)|$, where the infimum is taken over all neighborhoods U of x. It is well-known that $\omega(F, \cdot): X \to [0, \infty]$ is upper semi-continuous and vanishes at isolated points of X.

Let an upper semi-continuous function $f: X \to [0, \infty]$ vanishing at isolated points of X be given. If there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$ then we call F an ω -primitive for f. By the ω -problem on a topological space X we mean the problem of the existence of an ω -primitive for a given upper semi-continuous function vanishing at isolated point of X.

Complete solution of the ω -problem for metrizable spaces was obtained in 2001 [Ew2]. Namely, the following theorems are true:

Theorem 1. [Ew2, Theorem 3] Let (X, d) be an arbitrary metric space and $f: X \to [0, \infty)$ an upper semi-continuous function which vanishes on $X \setminus X^d$. Then for each lower semi-continuous function $g: X \to (0, \infty)$ there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$ and $-g < F \leq f$.

Theorem 2. [Ew2, Theorem 4] Let (X, d) be an arbitrary metric space and $f: X \to [0, \infty]$ an upper semi-continuous function which vanishes on $X \setminus X^d$. Then there exists a function $F: X \to \mathbb{R}$ such that $\omega(F, \cdot) = f$.

To formulate equivalent condition for the existence of an ω -primitive for each continuous function $f: X \to \mathbb{R}$ we need a notion of a resolvable space, which was introduced in [H1].

Definition 1. [H1] A topological space (X, \mathcal{T}) is said to be resolvable if it is dense in itself and contains two disjoint sets which are dense.

120

Mathematical Reviews subject classification: Primary: 54C30; Secondary: 26A99 Key words: oscillation of a function, upper and lower Baire functions, upper semi-

continuous functions, ω -primitive, resolvable spaces

•

Theorem 3. Let (X, \mathcal{T}) be any topological space dense in itself. The following conditions are equivalent:

- 1. X is resolvable,
- 2. for each continuous function $f: X \to [0, +\infty)$ there exists $f: X \to [0, +\infty)$ such that $\omega(F, \cdot) = f$,
- 3. there exist $\delta > 0$ and a continuous function $f: X \to [\delta, +\infty)$, which has an ω -primitive.

Theorem 4. Let (X, \mathcal{T}) be any topological space. For each $f: X \to [0, +\infty)$ the set $\{F: X \to \mathbb{R}: \ \omega(F, \cdot) = f\}$ is closed in the space \mathbb{R}^X of all functions from X to \mathbb{R} with the metric of uniform convergence $\operatorname{dist}(g, h) = \min\{1, \sup\{|g(x) - h(x)|: x \in X\}\}.$

Now, we give some sufficient conditions for the existence of an ω -primitive.

Theorem 5. Let (X, \mathcal{T}) be a topological space dense in itself and let $f: X \to \mathbb{R}$ be any upper semi-continuous function. If a subset A of the space X satisfies the following conditions:

- 1. $\operatorname{cl}(A) = \operatorname{cl}(X \setminus A) = X$,
- 2. the set $\{x \in A : f(x) \limsup f(t) > \varepsilon\}$ is closed for each $\varepsilon > 0$,
- 3. $\limsup f(t) = \limsup f(t)$ for each $x \in A$,

 $(X \setminus A) \ni t \to x \qquad t \to x \\ then the function F: X \to \mathbb{R} defined by$

$$F(x) = \begin{cases} f(x) & if \quad x \in X \setminus A, \\ -(f(x) - \limsup_{t \to x} f(t)) & if \quad x \in A, \end{cases}$$

is an ω -primitive for f.

Theorem 6. Let (X, \mathcal{T}) be a regular first countable and separable topological space. Then for each pair of functions $f: X \to [0, +\infty)$ upper semi-continuous and $g: X \to (0, +\infty)$ lower semi-continuous, there exists a function $f: X \to [0, +\infty)$ such that $\omega(F, \cdot) = f$ and $-g < F \leq f$.

In the theory of the ω -problem for metric spaces very important role plays the case of so called massive spaces. Each upper semi-continuous function f defined on a massive metric space has an ω -primitive of very easy form $F = f \cdot \chi_A$, where χ_A is a characteristic function of some set A and A is of type F_{σ} . We study problem of the existence of a set $A \subset X$ for which $\omega(f \cdot \chi_A, \cdot) = f$ for a function defined on a massive topological space. **Definition 2.** [Du] Let (X, \mathcal{T}) be a topological space. We say that X is:

- σ -discrete at a point $x \in X$, if there exists a neighborhood U of x which is a σ -discrete set,
- massive at a point $x \in X$, if it is not σ -discrete at x, this means that any neighborhood of x is not a σ -discrete set,
- massive, if it is massive at each point $x \in X$.

Obviously, each massive topological space is dense in itself.

Definition 3. We say that a topological space (X, \mathcal{T}) is weakly regularly resolvable if it contains a dense subset which is σ -discrete. We say that a subset $A \subset X$ is weakly regularly resolvable if there exists a σ -discrete set $B \subset A$ such that $A \subset \operatorname{cl}(B)$.

Theorem 7. Let (X, \mathcal{T}) be a massive topological space. The following conditions are equivalent.

- 1. each subset of X, which is intersection of two sets, one of which is open and the second one is closed, is weakly regularly resolvable,
- 2. for each upper semi-continuous function $f: X \to [0, +\infty)$ there exists a σ -discrete set $A \subset X$ such that $\omega(f \cdot \chi_A, \cdot) = f$.

Theorem 8. Let (X, \mathcal{T}) be a massive topological space such that each subset of X which is intersection of two sets, first one closed and second one open, is weakly regularly resolvable. Moreover, let $f: X \to [0, +\infty]$ be any upper semicontinuous function, $A_{\infty} = \{x \in X: f(x) = +\infty\}$ and put $\tilde{f} = f \cdot \chi_{X \setminus A_{\infty}}$. The following condition are equivalent:

- 1. there exists a σ -discrete set $A \subset \{x \in X : f(x) < +\infty\}$ such that $\omega(f\chi_A, \cdot) = f$,
- 2. $A_{\infty} \subset \{x \in X \colon M_{\widetilde{f}}(x) = +\infty\},\$
- 3. if $f(x) = \infty$ then for each K > 0 and for each neighborhood U of x there exists $y \in U$ for which $K < f(y) < \infty$.

References

- [Du] Z. Duszyński, Z. Grande and S. Ponomarev, On the ω -primitive, Math. Slovaca 51 (2001), 469–476.
- [Ew2] J. Ewert and S. Ponomarev, On the existence of ω-primitives on arbitrary metric spaces, Math. Slovaca 53 (2003), 51–57.
- [H1] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943), 309–333.