Szymon Głąb, Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland. email: szymon.glab@p.lodz.pl

STRONG ALGEBRABILITY OF SEQUENCES AND FUNCTIONS

Assume that B is an algebraic structure or a topological algebraic structure of some fixed category $\mathcal C$ (such as a linear space, a linear algebra, a Banach space, etc.) We say that a set $E\subset B$ is $\mathcal C$ -structuralbe (lineable, algebrable, spaceable, respectively) if there is a substructure A of B with $A\subset E\cup C$, where C is the set of the constants of a structure B. In particular, if B is a linear space being also an algebra (we call it a linear algebra), we say that $E\subset B$ is algebrable whenever $E\cup\{0\}$ contains a subalgebra A of B.

For a cardinal κ , we say that S is called a κ -generated free structure of a given category, if there exists a subset $X = \{x_{\alpha} : \alpha < \kappa\}$ of S such that any function f from X to some structure S' of the same category as S, can be uniquely extended to a homomorphism from S into S'.

Proposition 1. The set c_{00} is ω -algebrable in c_0 but is not strongly 1-algebrable.

Theorem 2. The set $c_0 \setminus \bigcup \{l^p : p \ge 1\}$ is densely strongly \mathfrak{c} -algebrable in c_0 .

Theorem 3. The set of all sequences in l^{∞} which set of limits points is homeomorphic to the Cantor set is comeager and strongly \mathfrak{c} -algebrable.

Theorem 4. The set of all non-measurable functions from $\mathbb{R}^{\mathbb{R}}$ is strongly $2^{\mathfrak{c}}$ -algebrable.

Theorem 5. The set of all sequences in l^{∞} which do not attain their supremum is spaceable but it is not 1-algebrable.