Martin Koc, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8 - Karlín, Czech Republic. email: koc@karlin.mff.cuni.cz

ON KANTOROVICH'S RESULT ON THE SYMMETRY OF DINI DERIVATIVES

Results presented in the talk were obtained in cooperation with L. Zajíček and can be found in entirety in our joint article [3].

For $f:(a,b) \to \mathbb{R}$, let A_f denote the set of all points at which f is Lipschitz from the left and is not Lipschitz from the right. Symmetrically, let B_f denote the set of all points at which f is Lipschitz from the right and is not Lipchitz from the left.

Note that the classical Denjoy-Young-Saks theorem (see e.g. $[5, \S70]$) gives that A_f and B_f are always Lebesgue null.

The set A_f (in the case when f is continuous) was considered by L.V. Kantorovich in his early work [2]. His result [2, Theorem II, p. 161] reads as follows:

Theorem K. If f is a continuous function on (a,b), then A_f is a (k_d) -reducible set.

A set $E \subset \mathbb{R}$ is called (k_d) -reducible, if for each perfect set $F \subset E$ the set of all points $x \in F$ at which F is not strongly right porous is not dense in F. In other words, E is (k_d) -reducible if and only if each perfect set $F \subset E$ has a portion F^* (i.e. a nonempty set of the form $F^* = F \cap (c, d)$) which is a strongly right porous set.

Let us recall the definition of strong right porosity:

Definition. Let $E \subset \mathbb{R}$ and $x \in \mathbb{R}$.

(i) We say that E is strongly right porous at x if there exists a sequence of open intervals $\{I_k\}_{k=1}^{\infty}$ on the right from x such that $|I_k| \to 0$, $\operatorname{dist}(x, I_k) \to 0$, $\frac{|I_k|}{\operatorname{dist}(x, I_k)} \to \infty$ and $I_k \cap E = \emptyset$ for every $k \in \mathbb{N}$.

Mathematical Reviews subject classification: Primary: 26A27, 28A05

Key words: Dini derivative, one-sided Lipschitzness, σ -porous set, strong right porosity, abstract porosity, first keyword

- (ii) We say that E is strongly right porous if E is strongly right porous at each point of E.
- (iii) We say that E is σ -strongly right porous if it can be expressed as a countable union of strongly right porous sets.

For an alternative definition of unilateral strong porosity as well as for other definitions of similar porosity notions see e.g. [5] or [7].

Independently on [2], the sets A_f and B_f were studied in [6]. The result of [6, Theorem 2] states that $A_f \cup B_f$ is σ -strongly porous even for an arbitrary function f on (a, b) and the proof clearly gives that

$$A_f$$
 is a σ -strongly right porous set. (1)

For an alternative proof, where (1) can be seen more easily, see the proof of [5, Theorem 73.2].

Theorem K is (for a continuous function f) stronger than (1), since it easily implies that

(*) there exists a σ -strongly right porous set $A \subset (a, b)$ such that $A \subset A_f$ for no continuous function f on (a, b).

Slightly changing the proof of (1) from [5], we obtain Theorem K, and so also (*), even for an arbitrary function f. Moreover, we fully characterize the smallness of sets A_f , proving the following result (see [3, Theorem 1.2]):

Theorem 1. Let $a, b \in \mathbb{R}^*$ and $A \subset (a, b)$. The following statements are equivalent:

- (i) There exists a continuous function $f:(a,b) \to \mathbb{R}$ such that $A \subset A_f$.
- (ii) There exists a function $f:(a,b) \to \mathbb{R}$ such that $A \subset A_f$.
- (iii) There exists a sequence $\{A_n\}_{n=1}^{\infty}$ of strongly right porous sets such that $A_1 \subset A_2 \subset \dots$ and $A = \bigcup_{n=1}^{\infty} A_n$.

The condition (iii) gives a full simple characterization of the hereditary class generated by the sets of the form A_f , i.e. the class

$$\mathcal{H} := \{ A \subset (a, b) : A \subset A_f \text{ for some } f : (a, b) \to \mathbb{R} \}.$$

This characterization shows that \mathcal{H} is strictly smaller than the class \mathcal{S} of all σ -strongly right porous sets, since there exists a closed σ -strongly right porous set $S \subset \mathbb{R}$ such that $S \neq \bigcup_{n=1}^{\infty} S_n$ whenever $S_n \subset S_{n+1}$ and S_n is strongly right porous for every $n \in \mathbb{N}$ (see [3, Proposition 3.2]). On the other hand,

Theorem 1 immediately implies that the σ -ideal generated by the sets of the form A_f coincides with S.

For a continuous function $f:(a,b) \to \mathbb{R}$, denote

$$F_n := \left\{ x \in (a,b) : \left| \frac{f(y) - f(x)}{y - x} \right| \le n \text{ for each } y \in \left(x - \frac{1}{n}, x\right) \right\} \quad (n \in \mathbb{N}).$$

It is easy to see that all F_n are closed and $F_n \nearrow L^-$, where L^- is the set of all points at which f is Lipschitz from the left. So L^- is an F_{σ} set. Similarly, the set L^+ of all points at which f is Lipschitz from the right is an F_{σ} set. Set $H := \mathbb{R} \setminus L^+$. Then H is a G_{δ} set. Since sets $F_n \cap H$ are strongly right porous for every $n \in \mathbb{N}$ and $A_f = \bigcup_{n=1}^{\infty} F_n \cap H$, we get that if

(i) $A = A_f$ for some continuous function $f : \mathbb{R} \to \mathbb{R}$,

then

(ii) there exist closed sets $F_1 \subset F_2 \subset ...$ and a G_{δ} set H such that each $F_n \cap H$ is strongly right porous and $A_f = \bigcup_{n=1}^{\infty} F_n \cap H$.

Problem 2. We do not know whether the implication (ii) \Rightarrow (i) holds. In case of positive answer, we would obtain a full simple characterization of sets of the form A_f for continuous functions f.

We also do not know the answer to the following (more general) question:

Question 3. Let $B \subset \mathbb{R}$ be a Borel (k_d) -reducible set. Do then exist strongly right porous sets A_n such that $A_1 \subset A_2 \subset ...$ and $\bigcup_{n=1}^{\infty} A_n = B$?

Finally, we present some easy but non-trivial observations on (k_d) -reducible sets and monotone unions of strongly right porous sets (see [3, Proposition 5.1] and [3, Proposition 5.2]). It is natural to work with an "abstract porosity P" instead of strong right porosity.

Let (X, ϱ) be a metric space. The open ball with center $x \in X$ and radius r > 0 will be denoted by B(x, r). By an *abstract porosity* on X we will mean a relation P between points of X and subsets of X (i.e. $P \subset X \times 2^X$) fulfilling the following "axioms":

- (A1) If $A \subset B \subset X$, $x \in X$ and P(x, B), then P(x, A).
- (A2) P(x, A) if and only if there exists r > 0 such that $P(x, A \cap B(x, r))$.

(A3) P(x, A) if and only if $P(x, \overline{A})$.

We say that $A \subset X$ is

126

- (i) *P*-porous at $x \in X$, if P(x, A),
- (ii) *P*-porous if P(x, A) for every $x \in A$,
- (iii) σ -*P*-porous if A is a countable union of *P*-porous sets.

It is easy to see that strong right porosity on \mathbb{R} (as most of natural versions of porosity) is an abstract porosity which also fulfills

(A4) If $x \in X$ is not an isolated point of X, then $P(x, \{x\})$.

Proposition 4. Let (X, ϱ) be a metric space, P an abstract porosity on X and $A \subset X$. Then the following conditions are equivalent:

- (i) $A_n \nearrow A$, where each A_n is P-porous.
- (ii) $B_n \nearrow A$, where each B_n is P-porous and relatively closed in A.
- (iii) $A = \bigcup_{n=1}^{\infty} C_n$, where each C_n is P-porous and relatively closed in A.

We say that $A \subset X$ is *P*-reducible if each nonempty closed set $F \subset A$ contains a *P*-porous subset with nonempty relative interior in *F*.

Proposition 5. Let (X, ϱ) be a separable topologically complete metric space without isolated points, $A \subset X$ and let P be an abstract porosity on X satisfying (A4). Then the following conditions are equivalent:

- (i) A is P-reducible.
- (ii) Each nonempty perfect set $F \subset A$ contains a P-porous set with nonempty relative interior in F.
- (iii) Each closed set $F \subset A$ is a countable union of closed P-porous sets.

Hence we obtain the following result:

Corollary 6. Let (X, ϱ) be a separable topologically complete metric space without isolated points, $A \subset X$ and let P be an abstract porosity on X satisfying (A4).

- (a) If there exist P-porous sets P_n with $P_n \nearrow A$, then A is P-reducible.
- (b) If A is closed and P-reducible, then there exist P-porous sets P_n with $P_n \nearrow A$.

If $X = \mathbb{R}$ and P is strong right porosity, then Corollary 6 (b) does not hold for an arbitrary $A \subset X$ (and it seems that it also does not hold for all other interesting cases). Indeed, if $A \subset \mathbb{R}$ is a Bernstein set of the second category (see [4, Theorem 5.4]), then A is (k_d) -reducible (since it contains no perfect subset), but A is not a σ -strongly right porous set. This fact motivates the following natural question:

Question 7. Does Corollary 6 (b) hold for Borel sets $A \subset X$?

The answer to this question is negative in some non-trivial cases and positive in others (see [3, Remark 5.4 (2)] for examples).

If $X = \mathbb{R}$ and P is strong right porosity, then the question coincides with Question 3. We also do not know the answer e.g. in the case when $X = \mathbb{R}$ (or $X = \mathbb{R}^n$) and P is the upper porosity on X.

References

- [1] M. Doležal, M. Zelený, Infinite games and σ -porosity, preprint.
- [2] L.V. Kantorovich, Sur les nombres dérivés des fonctions continues (in Russian), Mat. Sb. 39 (1932), 153–170.
- [3] M. Koc, L. Zajíček, On Kantorovich's result on the symmetry of Dini derivatives, Comment. Math. Univ. Carolin. 51,4 (2010), 619–629.
- [4] J.C. Oxtoby, Measure and Category, Springer-Verlag, 1980.
- [5] B.S. Thomson, *Real Functions*, Lecture Notes in Mathematics 1170, Springer-Verlag, 1985.
- [6] L. Zajíček, On the symmetry of Dini derivates of arbitrary functions, Comment. Math. Univ. Carolin. 22 (1981), 195–209.
- [7] L. Zajíček, Porosity and σ-porosity, Real Anal. Exchange 13 (1987/88), 314–350.
- [8] L. Zajíček, M. Zelený, Inscribing closed non-σ-lower porous sets into Suslin non-σ-lower porous sets, Abstr. Appl. Anal. 2005:3 (2005), 221– 227.
- [9] M. Zelený, L. Zajíček, Inscribing compact non-σ-porous sets into analytic non-σ-porous sets, Fund. Math. 185 (2005), 19–39.