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ATOMIC DECOMPOSITION OF
LORENTZ-BOCHNER SPACES AND

APPLICATIONS

Abstract

In this paper, we show that under certain conditions, the Lorentz-
Bochner spaces have an atomic decomposition. This atomic decompo-
sition is then used for the study of the boundedness of some operators
on these spaces such as the Hardy-Littlewood maximal operator, the
Hilbert transform, the multiplication and composition operators. A
version of Marcienkiewicz interpolation Theorem for Lorentz-Boncher
spaces is also revisited.

1 Introduction.

In his papers [12] and [13], G. G. Lorentz introduced the now famous Lorentz
Spaces Lp,q in the early 1950s, as a generalization of the Lp spaces. It is known
that in general these spaces are quasi-Banach spaces. The Lorentz-Bochner
spaces are some variants of the Lorentz spaces defined on σ-finite measure
spaces with Banach spaces-valued functions. Atomic decompositions of Ba-
nach spaces have been studied before by many authors for various purposes.
For instance in [5], R. R. Coifman proved that the Hardy’s space H1(D) has
an atomic decomposition, a result that can be used to give another proof of
the famous theorem by C. Fefferman [8] that (H1(D))∗ = BMO. Weisz [17]
studied atomic decompositions of martingales Hardy’s spaces, Liu and Hou
[14] studied the atomic decomposition of Banach-vector-valued martingales
spaces, Yong, Lihua and Peide [18] studied atomic decompositions of Lorentz
martingale spaces.
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In this paper, we present an atomic decomposition for the Lorentz-Bochner
space, defined on a σ-finite measure space (Ω,A, µ) with X-valued functions,
where X is a Banach space. This atomic decomposition can be an effective
tool to prove the boundedness of operators such as the the Hardy-Littlewood
operator, the Hilbert transform, the multiplication, the composition operators
acting on theses spaces. Indeed, the boundedness of these operators is reduced
to the boundedness on characteristic functions. We will also give another proof
of a version of Marcienkiewicz Interpolation Theorem on the Lorentz-Bochner
spaces.

Let (Ω,A, µ) be a σ-finite measure space with

Ω = ∪∞n=1Ωn, where Ωn ∩ Ωm = ∅, n 6= m. (1)

Definition 1. Let X be a Banach space. We define for a measurable function
f : Ω → X the decreasing rearrangement of f as the function f∗ defined on
[0,∞) by

f∗(t) = inf{y > 0 : d(f, y) ≤ t} ,

where d(f, y) = µ({x : |f(x)| > y}) is the distribution of the function f .
For t > 0, let

f∗∗(t) =
1

t

∫ t

0

f∗(s)ds, f∗∗(0) = f∗(0).

We also define on Ω the function ‖f‖ by ‖f‖(ω) = ‖f(ω)‖, ω ∈ Ω.

Definition 2. Given a strongly measurable function f , define

‖f‖p,q =


(
q

p

∫ ∞
0

(
t

1
p ||f ||∗∗(t)

)q dt
t

) 1
q

if 1 < p <∞, 1 ≤ q <∞,

sup
t>0

t
1
p ||f ||∗∗(t) if 1 < p ≤ ∞, q =∞.

The set of all functions f with ‖f‖p,q <∞ is called the Lorentz-Bochner Space
with indices p and q and denoted by Lp,q(Ω, X). We know that endowed with
this norm, the Lorentz-Bochner spaces are Banach spaces. Recall that for 1 <
p, q < ∞, we have L∗p,q(Ω, X) = Lp′,q′(Ω, X

∗) and L∗p,1(Ω, X) = Lp,∞(Ω, X∗)
where p′ and q′ are the Hölder conjugates of p and q respectively and X∗ is
the dual space of X. In the sequel, we will refer to Lp,q(Ω, X) as Lp,q for
simplicity.

Remark 3. We will make the assumption throughout this paper that µ is a
separable measure, that is, there is a countable family M of sets from A of
finite measure such that for any ε > 0 and any set A ∈ A of finite measure,
we can find B ∈M with µ(A∆B) < ε.
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Remark 4. We can choose the Ωn’s in (1) such that

‖χΩn‖p,q = 1, ∀n ∈ N, 1 < p <∞, 1 < q ≤ ∞. (2)

where χΩn is the characteristic function on the µ-measurable set Ωn. In fact,
for all µ-measurable A ⊂ Ω, we have

‖χA‖p,q = µ(A)1/p.

Thus, by normalization we can choose Ωn such that (2) is satisfied.

Definition 5. Recall that the centered Hardy-Littlewood maximal operator
on Lp,q is defined as

Mf(x) = sup
r>0

1

µ(Br(x))

∫
Br(x)

‖f(t)‖dµ(t),

where Br(x) is the ball of X centered at x with radius r.
For a locally integrable function f on R, define the Hilbert transform H on
Lp,q(R,R) as

Hf(x) =
1

π
p.v

∫
R

f(t)

x− t
dt, for all x ∈ R.

For a strongly bounded measurable function g : Ω→ B(X) (the set of bounded functions on X),
we define the multiplication operator Mg : Lp,q → Lp,q as

Mgf(ω) = g(ω)(f(ω)), for ω ∈ Ω, and for f ∈ Lp,q.

For a non-singular measurable transformation h : Ω→ Ω, we define the com-
position operator on Lp,q as

Chf(ω) = (f ◦ h)(ω), for ω ∈ Ω, and for f ∈ Lp,q.

A linear or quasi-linear operator T is said to of type (p, q) if T : Lp,q → Lp,q

is bounded. T will be of restricted-type (p, q) if T : Lp,1 → Lp,q is bounded.
For two Banach spaces X1 and X2, we will denote ‖x‖X1

∼= ‖x‖X2 to say that
there are two absolute constants C1, C2 such that

C1‖x‖X1 ≤ ‖x‖X2 ≤ C2‖x‖X1 .

We will denote through out this paper N as the set of positive integers and

l1(X) as the set of sequences {xn ∈ X}n∈N such that

∞∑
n=1

‖xn‖X <∞.
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2 Main Results.

Our first result, which is a generalization of Theorem 2.1 in [9] provides a
candidate for the atomic decomposition of Banach spaces. The proof is in the
same line to that of Theorem 2.1 in [9] up to some minor adjustments and will
be omitted for sake of brevity.

Theorem 6. Let K be a real or complex Banach space, and B = (bi)i∈I a
(not necessarily countable) bounded family in K. Let Φ : K → K be a bounded
function. Define

KB,Φ =

{
f =

∑
i∈I

xiΦ(bi) : xi ∈ R or C,
∑
i∈I
|xi| <∞

}
.

Let a norm on KB,Φ be defined as

‖f‖KB,Φ = inf
∑
i∈I
|xi|, where the infimum is taken over all representation of f.

Then KB,Φ is a Banach subspace of K. We will call this space the atomic
decomposition space of K.

Remark 7. The function Φ has no particular role except to show that many
atomic decompositions can be found, by replacing bi with Φ(bi) provided Φ is
bounded.

The next result is due to F.F. Bonsall [4], and gives conditions under which
a Banach space may be norm-equivalent to its atomic decomposition space.

Proposition 8 ([4],Theorem 1). Suppose the assumptions of Theorem 6 are
satisfied. If there exists an absolute constant C such that

sup
i∈I
|ψ(Φ(bi))| ≥ C‖ψ‖K∗ , for all ψ ∈ K∗,

then

‖f‖K ∼= ‖f‖KB,Φ .

Remark 9. It will be important to note that the two constants involved in the
conclusion of Proposition (8) are C1 = sup

i∈I
‖bi‖K and C2 = C.

The next result is about providing a candidate for the atomic decomposi-
tion of Lorentz-Bochner spaces Lp,q. For simplicity, we will denote χΩn (Where
Ωn is given such as in (1)) by bn for all n ∈ N.
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Lemma 10. Let 1 ≤ q ≤ ∞, 1 < p ≤ ∞, and Ω be given as in (1). Consider
Bp,q the set of strongly measurable functions f : Ω→ X such that

f =

∞∑
n=1

xp,qn bn, with xp,qn ∈ X , and {xp,qn }n∈N ∈ l1(X).

Then (Bp,q, ‖ · ‖Bp,q ) is a Banach subspace, dense in Lp,q with

‖f‖Bp,q = inf

∞∑
n=1

‖xp,qn ‖, where the infimum is taken over all representations of f.

Remark 11. Note that the space Bp,q was first introduced in the early eighties
by De Souza in [6], for Ω = [0, 2π] and X = C, q = p and was denoted by Bp,
the space formed by special atoms.

Theorem 12. Let 1 < p <∞, 1 ≤ q <∞. Suppose C(p, q) = sup
f∈Lp,q

‖f‖Bp,q <

∞. Then

|‖f‖p,q ∼= ‖f‖Bp,q , for all f ∈ Lp,q.

Remark 13. This theorem generalizes the result obtained by De Souza in [7]
for q = 1, Ω = [0, 2π] and X = C.

Corollary 14. Let T be a continuous operator on Lp,q not necessarily linear.
If T is bounded on Bp,q, then T is bounded on Lp,q.

3 Applications

Let 1 < p < ∞, 1 ≤ q < ∞. We will study the boundedness of some
operators on Lp,q and Bp,q. Throughout this section, all the constants will
be generic constants for simplicity. For a function f ∈ Bp,q, we consider it as

f =

∞∑
n=1

xp,qn bn with

∞∑
n=1

|xp,qn | <∞.

3.1 Centered Hardy-Littlewood Maximal Operator

Corollary 15. For X = C, the centered Hardy-Littlewood maximal M oper-
ator maps Bp,q to Bp,q boundedly.
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3.2 Hilbert Transform

In the next result, our concern is the boundedness of the Hilbert transform
H on Lp,q. In the literature, the boundedness is obtained (see [3]) using the
following inequality

(Hf)∗(t) ≤ C

(
q

t

∫ t

0

f ∗(s)ds+

∫ ∞
t

f∗(s)
ds

s

)
, for some positive constant C.

We show that, under equivalent Sawyer’s-type condition (3) for Lp,q spaces
(see [16]), the atomic decomposition can also be used to obtain the proof of
the boundedness of H on Lp,q . Note that similar assumptions are used by
Nazarov et al. (see [15], Theorem 2.1) to show the boundedness of H on L2.

Corollary 16. Let Ω = X = R. Suppose there is a universal constant such
K such that for any interval A,

‖HχA‖p,q ≤ Kµ(A)1/p. (3)

Then the Hilbert transform H : Lp,q → Lp,q is bounded.

Remark 17. Michael Lacey rightfully pointed to the author during a cor-
respondence that in the case of the Hilbert operator, the atoms bn have
to be characteristic functions of intervals, unless they are chosen so that
‖bn‖p,q < ‖χΩn

‖p,q.

Proofs of the next two results can also be found in [1], [2], and [10]. When
applying the atomic decomposition on Lp,q, these results are obtained easily.

3.3 Multiplication Operator

Corollary 18. Let g : Ω → B(X) be a strongly measurable function. Then
the multiplication operator Mg : Lp,q → Lp,q, f 7→ Mgf = f · g is a bounded
operator if g ∈ L∞(Ω,B(X)).

3.4 Composition Operator

Corollary 19. Let h : Ω → Ω be a non-singular measurable transformation,
then the composition operator Ch : Lp,q → Lp,q, f 7→ Chf = f ◦h is a bounded
operator on Lp,q if there is an absolute constant M such that µ(h−1(A)) <
Mµ(A), for all A ∈ A.
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3.5 Interpolation Theorem

Corollary 20. Let T be a continuous operator of restricted-type (pi, qi) with
1 < pi, qi <∞, i = 0, 1. Put

1

p
=

θ

p0
+

1− θ
p1

,
1

q
=

θ

q0
+

1− θ
q1

for some θ ∈ (0, 1). (4)

Then the operator T is of type (p, q).

4 Concluding remarks

The atomic decomposition we propose in this paper has some nice applications.
Though we study just the Hardy, the Hilbert, the composition and multiplica-
tion operators, we believe our result could be applied to more than just these
operators. In fact, Michael Lacey [11] who intensively studied the Carleson
operator pointed to us that the results obtained here can be used to study
Carleson operators on Fourier series on Lp,q spaces. Going forward, it would
be interesting to see how we can generalize these results to Calderon-Zygmund
operators in order to obtain the a T1-type theorem.

Acknowledgment. The author wishes to thank Micheal Lacey for the valu-
able comments and insights to the paper.
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