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ON TOPOLOGICAL CHAOS

Abstract

We discuss four notions of chaos, positive topological entropy, Li-
Yorke chaos, Devaney chaos, a Bruckner-Ceder type of chaos, their
eventual relations and confront them with the state of art in topological
dynamics, presenting classical and new results, and posing some open
problems.

1 Introduction

A topological dynamical system is a pair (X, f) with f : X → X, where X is
a compact metric space and f is continuous. We denote by C(X) the space
C(X,X) of all continuous maps from X into X endowed with the sup norm. A
topological dynamical system (X, f) is a compact metric space X and a con-
tinuous self-map f of X. We denote by C(X) the space C(X,X) comprised
of all continuous maps from X into X. We endow this set with the sup norm
and hence it forms a complete and separable metric space.
We find in the literature a variety of definitions of chaos for maps f in C(X).
Common to all, however, is the idea that points close together can have orbits
or ω-limit sets (attractors) that spread apart or are far apart.
As Blanchard in [3], we remark that what we call a definition of chaos is one
that has been explicity or implicity coined as such by somebody.

Topological entropy

Topological entropy is the exponential growth rate of the number of essen-
tially different orbit segments of length n. It measures the complexity of the
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orbit structure of a dynamical system ([8], [13]).

Let (X, d) be a compact metric space and f ∈ C(X). For each n ∈ N,
define on X the metric dn as

dn(x, y) = max{d(f i(x), f i(y)) : 0 ≤ i < n}.

The metric dn measures the maximum distance between the first n iterates
of x and y. Fix ε > 0. A subset E of X is said to be (n, ε, f)-separated if any
two distinct points of E are at least ε apart in the metric dn.
Denote by N(n, ε, f) the maximum cardinality of an (n, ε, f)-separated set.

The topological entropy of the map f is defined by

ent(f) = h(f) = lim
ε→0

(
lim sup
n→∞

1

n
logN(n, ε, f)

)
.

(For equivalent definitions of entropy, see [6].
The topological entropy is either a finite non-negative number or +∞.

There are dramatic differences between dynamical systems with zero topolog-
ical entropy and dynamical systems with positive topological entropy.

Example 1.1. The topological entropy of an isometry is 0.

Example 1.2. [6] The topological entropy of the shift map σ is a positive
number.

Definition 1.3. (Topological conjugation) Let X and Y be metric spaces, and
let f : X → X and g : Y → Y be continuous maps. The maps f and g are
said to be topologically conjugate if there exists a homeomorphism h : X → Y
such that

(h ◦ f)(x) = (g ◦ h)(x),∀x ∈ X.

Properties of topological entropy:

1. Topological entropy is an invariant of topological conjugacy.

2. The topological entropy of a continuous map f : X → X does not depend
on the choice of a particular metric generating the topology of X.

3. h(fm) = mh(f), ∀m ∈ N.

4. If f is invertible, then h(f−1) = h(f). Hence h(fm) = |m|h(f) for all
m ∈ Z.
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5. If f ∈ C(X), g ∈ C(Y ), with X = (X, dX) and Y = (Y, dY ) metric
spaces, then

(a) h(f × g) = h(f) + h(g),

(b) if g is a factor of f (or, equivalently, f is an extension of g), then
h(f) ≥ h(g).

Example 1.4. Let X = (2N)
N

, f : X → X s.t.

f(α(1), α(2), . . .) = (σ(α(1)), σ(α(2)), . . .)

(α(i) ∈ 2N, ∀i ∈ N). Then h(f) =∞.

Li-Yorke chaos

A subset S of X containing at least two points is called a scrambled set if
for any x, y in S with x 6= y,

lim sup
n→∞

|fn(x)− fn(y)| > 0

and
lim inf
n→∞

|fn(x)− fn(y)| = 0,

that is, x and y have orbits that get arbitrarily close to each other but in-
finitely often they are at a distance greater than some positive ε.

A map f is said to be Li-Yorke chaotic if it has un uncountable scrambled
set.

Remark 1.5. On the unit interval the existence of a two points scrambled set
implies the existence of an uncountable scrambled chaos (see, among others,
[19]).

Remark 1.6. As the definition of Li-Yorke chaos relies on the behaviour of
joint orbits, independently on what occurs in the neighbourhood, it is a partial
property.

Theorem 1.7. [4] Let X be a compact matric space and let f ∈ C(X). Then

h(f) > 0⇒ f is Li-Yorke-chaotic
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Devaney chaos

Sensitivity: sensitive dependence on initial conditions

A map f has sensitive dependence on initial conditions if there is s > 0
such that for all x ∈ X and ε > 0 one can find y with d(x, y) < ε and n ∈ N
such that d(fn(x), fn(y)) ≥ s.
(Minor changes in the initial state lead to dramatically different long-term
behavior.)

On the unit interval, originally, this definition was introduced by Guck-
enheimer with the requirement that the sensitivity hold on a set of positive
Lebesgue measure.
The definition used later by other authors is the one above, that extends to
all metric spaces and does not contain probabilistic assumption.

On the unit interval

sensitivity ⇒ positive topological entropy ⇒ Li-Yorke chaos

Transitivity

We say that f is topologically transitive if there is a point x whose forward
orbit is dense.
If X has no isolated points this condition is equivalent to the existence of a
point whose ω-limit set is the all of X.

Proposition 1.8. Let f ∈ C(X). Suppose that for any non-empty open sets
U and V there is n ∈ N such that fn(U) ∩ V 6= ∅ (i.e. f is topologically
mixing). Then f is topologically transitive.

Remark 1.9. The converse is not true: an irrational circle rotation is topo-
logically transitive but not topologically mixing.

Properties:

1. On infinite X, transitivity, dense P (f) ⇒ sensitivity.

2. Transitivity, h(f) > 0⇒ sensitivity.

3. f transiive and not sensitive ⇒ f has equicontinuity points.

4. Minimality without equicontinuity ⇒ sensitivity.
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5. On S1, transitivity, P (f) 6= 0⇒ sensitivity.

6. On S1, transitivity, not conjugate to irrational rotation ⇒ sensitivity.

7. On I, transitivity ⇒ h(f) > 0.

8. On I, transitivity ⇒ P (f) dense.

9. On S1, ∃ transitive homeomorphism.

10. On I and R, @ transitive homeomorphism.

11. X countable ⇒ no transitive map.

12. X countable ⇒ no sensitive map.

13. X with isolated points ⇒ no sensitive map.

Devaney chaos

Devaney introduced his own definition of chaos (“89”). Originally, the
definition was as follows: a map f ∈ C(X) is chaotic in Devaney sense if the
following conditions hold:

1. (X, f) is transitive;

2. the set of periodic points of f is dense in X;

3. f has sensitive dependence on initial conditions.

It is a well-known result that conditions (1) and (2) imply (3) ([1] (X metric);
[14] (X compact metric)).

Definition 1.10. f is chaotic on a subsystem in Devaney sense if there is a
perfect subset K of X such that f(K) = K and f |K , the restriction of f to
K, is Devaney chaotic.

Theorem 1.11. ([16], [18])

f Devaney chaotic⇒ f Li-Yorke chaotic

Theorem 1.12. On the unit interval

1. f chaotic in the sense of Devaney ⇔ transitivity, and
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2. f chaotic on a subsystem in the sense of Devaney

m

h(f) > 0

Remark 1.13. In the general contest of a compact metric space X there is
no relation between Devaney chaos and positive topological entropy.

Example 1.14. [10] The shift map is Devaney chaotic.

A Bruckner-Ceder type of chaos

On the unit interval

In (Chaos in terms of the map x 7→ ω(x, f), Pacific J. Math., “92”), Bruck-
ner and Ceder address directly the idea that points arbitrarily close together
can have ω-limit sets that are far apart. They furnish the family of ω-limit
sets of a continuous function with the Hausdorff metric and ask questions
related to the continuity of the map ωf : x 7→ ω(x, f). They find that ωf is
rarely continuous and they obtain several characterization of continuity for ωf .

In particular,

Theorem 1.15. ωf is continuous if and only if each ω-limit set for f has
cardinality 1 or 2.

Phrasing the questions in terms of the Baire class of ωf , they obtain, among
other properties, the results conerning continuity as corollaries, and a notion
of chaos strictly between Li-Yorke and positive entropy. Precisely, they prove
that

h(f) > 0⇒ ωf not Baire 1⇒ f is Li-Yorke chaotic.

So, f ∈ C(I) is said to be Bruckner-Ceder chaotic if ωf is not of Baire
class 1.

Some facts about Borel and Baire maps

Theorem 1.16. [7] For function from [0, 1] into (K([0, 1]),H) the Borel class
and the Baire class agree for finite ordinals.
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Remark 1.17. As Baire 1 maps can be characterized as those f whose re-
striction to any nonempty perfect set P has a point of continuity, we have
that, in particular, for f ∈ C(I),

ωf is Borel 1

m
the restriction to any perfect P 6= ∅ has a point of continuity.

Questions:
Is the previous theorem true in the general setting of X a compact metric
space?
Even just in the special case of the map ωf : X → K(X), x 7→ ω(x, f),
(f ∈ C(X)), are Baire and Borel property equivalent for finite ordinals?
Is it true that ωf is Borel 1 if and only if the restriction to any nonempty
perfect set P has a point of continuity?

On a compact metric space X

Theorem 1.18. [11] Let f ∈ C(X). Then ωf : X → K(X), x 7→ ω(x, f), is
of Baire class 2.

Theorem 1.19. [11] Let f ∈ C(X) with f chaotic in the sense of Devaney.
Then, either

1. ωf is everywhere discontinuous, or

2. ωf is continuous precisely on the set {x ∈ X : ω(x, f) = X}.

Example 1.20. [11] The shift map σ on n symbols is such that ωσ is every-
where discontinuous.

Questions:
What could be a generalization of the definition of Brucker-Ceder chaos from
I to X?
(i) ωf not of Borel class 1?
or
(ii) the existence of a perfect subset such that the restriction of ωf to it has
no point of continuity?

And

how would it be related to the other notions of chaos?
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Example 1.21. [15] There exists f ∈ C(X), with X Cantor set, such that
h(f) > 0 and X is minimal so that ωf is constant.

Example 1.22. [10] There exists f ∈ C(X), with X Cantos set, such that f
is Devaney chaotic, h(f) =∞ and ωf is everywhere discontinuous.

Example 1.23. [11] There exists f ∈ C(X), with X Cantos set, such that f is
Li-Yorke chaotic, h(f) = 0 and ωf is everywhere continuous as ω(x, f) = X,
for every x ∈ X.

Example 1.24. [11] There exists f ∈ C(X), with X Cantos set, such that
h(f) =∞, ωf is everywhere discontinuous and f has no periodic point, hence
it is not Devaney chaotic.

Remark 1.25. Hence, in the general setting

h(f) > 0 ; ωf somewhere discontinuous

Remark 1.26. Glasner and Weiss have proved that ∃K ⊆ Σ2 s.t. h(σ|K) = 0
and σ|K is Devaney chaotic. Hence, by joint result with T.H. Steele, ω(σ|K) is
everywhere discontinuous. Therefore, in the general setting,

ωf everywhere discontinuous ; h(f) > 0.

Question:
What if X is not a Cantor space? These examples (counter-examples) hold
(live) on the Cantor space!

Generic (typical) behavior

On the unit interval

Theorem 1.27. The set of all f ∈ C(I) with h(f) =∞ is a dense Gδ subsets
of C(I), that is the typical f ∈ C(I) has positive topological entropy.

As
“f is Devaney chaotic on a subsystem ⇔ h(f) > 0 ⇒ f is Bruckner-Ceder
chaotic ⇒ f is Li-Yorke chaotic”,
the following hold

Corollary 1.28. The typical f ∈ C(I) is Devaney chaotic on a subsystem.

Corollary 1.29. The typical f ∈ C(I) is Bruckner-Ceder chaotic.

Corollary 1.30. The typical f ∈ C(I) is Li-Yorke chaotic.
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Question:
What about the general contest of X a compact metric space?
What about the cases X a Cantor space and X an n-dimensional manifold?

Theorem 1.31. [20] The generic f ∈ C(M), where M is an n-dimensional
manifold, possesses a horse-shoe like structure.

Corollary 1.32. [11] Positive topological entropy, Devaney chaos on a sub-
system, Li-Yorke chaos are all present on a dense and open set of functions
in C(M).

Corollary 1.33. [11] The typical f ∈ C(M) has the property that ωf is
everywhere discontinuous on a subsystem.

Remark 1.34. The situation is completely different on the Cantor space! In
fact:

Theorem 1.35. [10] The typical element of C(2N) has zero topological entropy
and is Devaney chaotic on no subsystem K contained in 2N.

Theorem 1.36. [2] The typical element of C(2N) has no Li-Yorke pair.

Proposition 1.37. [11] The set
{f ∈ C(2N) : ωf is everywhere discontinuous on a subsystem}
is dense in C(2N).

Theorem 1.38. [11] ωf is continuous for the generic self-map f of the Cantor
space.
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