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STACKING SQUARES

Let H =
⋃
iHi be the union of finitely many unit squares in the plane. Is

there an upper bound on the ratio of H’s perimeter to H’s area? This question
was first posed by Tamás Keleti in 1998 on the famous Hungarian Schweitzer
competition [7]. Keleti conjectured that this upper bound is exactly 4. In [5],
Keleti’s student Zoltan Gyenes proved an upper bound of 5.6 and proved the
following theorem.

Theorem 1. If the Hi are assumed to be axis oriented, then the ratio of H’s
perimeter and area cannot exceed 4.

In the same paper, Gyenes showed that many natural generalizations of
Keleti’s paper fail. Notably, the corresponding ratio for unions of congruent
convex sets need not be bounded by the ratio for a single copy of the set.

We give an original inductive proof of Theorem 1 showing that when a
square is added the ratio of the change in perimeter and change in area is less
than 4. However, this method fails to generalize; if multiple orientations are
allowed the ratio of change in perimeter and change in area may be arbitrarily
large.

Finally, we examine the nature of a potential counterexample to Keleti’s
conjecture. Using the isoparametric inequality, we show that in a counterex-
ample with a minimal amount of squares, the squares overlap to a large degree.

Theorem 2. If H is a counterexample with a minimal number of squares,
then the area of Hi ∩ (H \Hi) is strictly greater than π

4 for each i.
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In a forthcoming paper, we explore how the perimeter area ratio is affected
when shifting or rotating H’s component squares.
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