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RECENT PROGRESS IN THE THEORY OF
MONOTONE METRIC SPACES

Abstract
A metric space (X,d) is called monotone if there is a linear order
< on X and ¢ > 0 such that d(z,y) < cd(z,z) for all z < y < z in
X. A brief account of recent results in the theory of monotone spaces
is presented.

1 Monotone spaces

Let ¢ > 0. A metric space (X, d) is called c-monotone if there is a linear order
< on X such that d(z,y) < cd(z, z) for all z < y < z in X. Say that (X,d) is
monotone if it is c-monotone for some ¢ > 0.

This notion was conceived in [12] to aid a problem regarding Hausdorff
dimension. Since then a number of papers focusing on monotone metric spaces
were written, some of them published, others to appear, and several more
papers are under preparation, e.g. [6, 5, 2, 10, 13, 7, 3, 8] A brief review of the
state of the theory of monotone metric spaces appeared two years ago in [11].
The present paper gives a concise account of several recent papers [13, 7, 3, 8]
not covered by the review [11].

2 Functions with monotone graphs

My talk at the Real Analysis Symposium in Wooster 2010 initiated a discus-
sion of several participants on the differentiability properties of continuous
functions whose graphs ar monotone subsets of the plane. The discussion led
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to a paper [13] authored by O. Zindulka, M. Hrusdk, T. Matrai, A. Nekvinda,
and V. Vlasak. All results of this section come from this paper.

Consider a continuous function f : I — R on an interval I. Denote its
graph by G(f) and let ¢y : & — (z, f(x)) be the natural parametrization
of G(f). It is easy to see that if the graph G(f) is a monotone subset of
the plane, then the natural order on G(f) defined by ¢¢(z) < ¥s(y) iff z <y
witnesses monotonicity of G(f). This uniqueness of the witnessing order makes
investigation of monotone graphs easier.

It is not hard to see that if f is differentiable at every point, then G(f) is a
countable union of monotone sets. At first sight it seems that differentiability
of f and the monotonicity of G(f) may be related even closer. The original
hope was that if the graph is monotone, then f is differentiable at a substantial
portion of I. It however turned out that the situation is much more delicate.

Let us first have a look at the pointwise monotonicity features of the graph.
We need to introduce some notions and notation.

Definition 2.1. e Let f : I — R be a continuous function and ¢ > 1. A point
y € I is an M-point of f if there is ¢ > 0 and € > 0 such that

forallz € (y—¢), z€ (y+e) |[P(x)—vW)| <clp(z) —v(z). (1)

e The set of all M-points of f is denoted M(f). The subset of the graph
{f(x) : 2 € M(f)} is denoted Mon(f).

Say that a metric space is o-monotone if it is a countable union of monotone
subspaces. It is not difficult to prove that Mon(f) is o-monotone. In partic-
ular, if all points of i are M-points, then G(f) is o-monotone. In the other
direction, if G(f) is o-monotone, then int M(f) is dense in I, i.e. Mon(G(f))
contains an open dense subset of G(f). Moreover, using Baire category argu-
ment one can prove a profound connection between M-points and monotone
subsets of Mon(f): Every monotone set M C G(f) is nowhere dense in G(f)
if and only if int M(f) = 0.

Differentiability vs. pointwise monotonicity

Let us have a look at Dini derivatives at M-points. The four Dini derivatives of
f at z are denoted f(z), f*(x), f~(x) and f~(x). If the four Dini derivatives
at = equal, the common value is of course the derivative f'(x). If the two right
Dini derivatives at x are equal, the common value is called the right derivative
and denoted f*(z); and likewise for the left side. The set of points where the
derivative of f exists (infinite values are allowed) is denoted D(f).

Recall that a point z € I is called a knot point of f if f~(x) = f(z) =
and f~(z) = f*(x) = —oo. The set of knot points of f is denoted K(f).
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We also consider approximate Dini derivatives (), f3,(2), fap(2) and
fapp() and the approzimate derivative f,,,(x) and right and left approzimate
derivatives. The set of points where the approximate derivative of f exists
is denoted Dapp(f). Approximate knot points are defined in the obvious way.
The set of approximate knot points of f is denoted Copp(f).

Linear measure, i.e. 1-dimensional Hausdorff measure in R? is denoted by
L.

Application of the ultimate version [1] of the Denjoy—Khintchine Theorem
to M-points shows that almost every M-point is either a point of approximate
differentiability or a knot point.

Theorem 2.2. If f : I — R is continuous, then
(i) D(f) € M(¥),

(ii) there is a set E C I such that 7 (G(f)|E) =0 and M(f) C Dapp(f) U
Kapp(f) U E. In particular, almost every M-point x ¢ Dapp(f) is a knot
point.

A careful calculation of Hausdorff measure of the set of knot points that
satisfy (1) yields the following corollaries to the theorem.

Theorem 2.3. If f : I — R is continuous, then ' (Mon(f)) is o-finite. In
particular, dimy Mon(f) = 1.

Corollary 2.4. If f : I — R is continuous with a monotone graph, then
HH(G(f)) is o-finite. In particular, dimy G(f) = 1.

Functions with a monotone or c-monotone graph

Let us now consider functions with a monotone graph. It turns out that for
such a function derivatives and approximate derivatives coincide:

Proposition 2.5. If f : I — R is continuous with a monotone graph, then
dp(@) = fT(x) for all x € I. A similar statement holds for all Dini deriva-
tives.

Thus the above theorems yield:

Corollary 2.6. If f : I — R is continuous function with a monotone graph,
then there is a set E C I such that 1 (G(f|E)) = 0 and I = D(f)UK(f)UE.
In particular, almost all points x ¢ D(f) are knot points.

Theorem 2.7. If f : I — R is a continuous function with a o-monotone
graph, then f is differentiable at a perfectly dense set, i.e. a set whose inter-
section with every nonempty interval contains a perfect set.
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Corollary 2.8. If f : I — R is a continuous function, then int M(f) C D(f).

One would hope for better results, e.g. that a function with a monotone
graph be differentable almost everywhere. But it is not the case.

Theorem 2.9. For every ¢ > 1 there is a continuous, almost nowhere differ-
entiable function f :[0,1] — R with a c-monotone graph.

Note that it follows from the above results that such a function necessarily
have the following properties:

e Every point of [0,1] is an M-point,

e the function is almost nowhere approximately differentiable,

e almost all points are knot points (actually approximate knot points),

e the function has a derivative at a perfectly dense set.

M -points and 1-monotone graphs

However, if the graph is 1-monotone, one can prove much more. An M-point is
termed an Mj-point, if it satisfies (1) of Definition 2.1 with ¢ = 1. It turns out
that being an M;j-point is almost everywhere equivalent to differentiability.

Theorem 2.10. If f: I — R is continuous, then there is a set E C I such
that A1 (G(f|E)) = 0 and D(f) € My(f) € D(f) U E. In particular, f is
differentiable at almost every My -point.

One of the first questions regarding monotone graphs was whether a mono-
tone graph guarantees bounded variation. As we shall see later, it is not so,
but the conclusion holds for 1-monotone graphs:

Theorem 2.11. If I is compact and f : I — R is continuous with a 1-
monotone graph, then f is of bounded variation.

Corollary 2.12. If I is compact and f : I — R is continuous, then f is of
bounded variation if and only if it is a sum of two continuous functions with
1-monotone graphs.

3 1l-monotone curves and sets

Motivated by the paper [13], A. Nekvinda, D. Pokorny and V. Vlasék wrote
a paper [7]. The questions they consider are:

(i) Suppose that I is compact and f : I — R has a finite derivative at
every point and a monotone graph. Does it follow that f is of bounded
variation?
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(ii) Suppose M C R"™ is 1-monotone. Is it true that dimy M < 1?7

As to the first question, a rather involved construction gives a negative
answer:

Theorem 3.1. For every ¢ > 1 there is a continuous function f :[0,1] = R
such that

o [ is infinitely differentiable at every x € (0, 1],

* /(0) =0,

e f is not of bounded variation,

e f has a c-monotone graph.

The second question is answered by the following theorem, with a highly
nontrivial proof.

Theorem 3.2. If M C R"™ is a monotone, bounded set, then 1 (M) < oo.
Therefore

e cvery monotone curve in R™ is of bounded variation,

e cvery monotone set in R™ is of o-finite linear measure.

4 Lipschitz mappings onto cubes and Urbanski
conjecture

Another paper [3] by T. Keleti, A. Mathé and O. Zindulka does not concentrate
on investigation of monotone spaces but rather an application.

In a recent paper [4], Mendel and Naor proved that every analytic metric
space contains sets of nearly the same Hausdorff dimension that are Lipschitz
equivalent to ultrametric spaces. In more detail:

Theorem 4.1 ([4]). Let X be an analytic metric space. For every e > 0 there
is a compact set Y C X such that dimyY > dimy X — € and a bi-Lipschitz
mapping 1Y — Z onto an ultrametric space.

Keleti, Mathé and Zindulka noticed that since every ultrametric space
is monotone and monotonicity is invariant under bi-Lipschitz mappings, the
Mendel-Naor theorem yields

Theorem 4.2. Let X be an analytic metric space. For every e > 0 there is a
compact monotone set’ Y C X such that dimpY > dimy X — €.

Since monotone spaces are, in a sense, rather simple, this trivial conse-
quence of Mendel-Naor theorem is likely to find applications. Keleti, Mathé
and Zindulka proved that monotone spaces nicely map onto cubes:
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Theorem 4.3. Let X be a compact monotone metric space and let k be a
positive integer. Then X can be mapped onto the k-dimensional cube [0, l]k by
a Lipschitz map if and only if X has positive k-dimensional Hausdorff measure.

Combining the two theorems they obtained a general theorem on mapping
analytic spaces onto cubes by Lipschitz maps:

Theorem 4.4. Let X be an analytic metric space and let k be a positive
integer. If dimy X > k then X can be mapped onto the k-dimensional cube
[0,1]% by a Lipschitz map.

This theorem can be used to solve a conjecture of Urbaniski. In [9] Urbariski
introduced the transfinite Hausdorff dimension of a metric space X:

tHD(X) = sup{ind f(Y) : Y C X, f:Y — Z Lipschitz, Z a metric space},

where ind denotes the transfinite small inductive topological dimension. He
showed that if X is a metric space with finite Hausdorff dimension, then
tHD(X) < |dimy X |, where |.] denotes the floor function, and conjectured
that if X is a metric space with finite Hausdorff dimension then either tHD(X) =
|dimy X | — 1 or tHD(X) = |dimy X |.

It is not hard to see that this conjecture fails in general: It is with ZFC
that there exist a set X C R? of positive (outer) Lebesque measure and of
cardinality less that continuum. For such a set dimy X = 2 but tHD(X) =
0. However, Keleti, Mathé and Zindulka noticed that Theorem 4.4 yields
Urbanski conjecture for analytic spaces:

Theorem 4.5. Let X be an analytic metric space.
o If dimy A is finite but not an integer, then tHD(A) = |dimy A],
o if dimy A is an integer, then tHD(A) is dimy A or dimy A — 1,
e if dimpy A = oo, then tHD(A) > wy.

5 Set-theoretic line of research

M. Hrusdk and O. Zindulka [2] studied cardinal invariants of the ideal Mon
of o-monotone subsets of the plane. Since this area is somewhat out of scope
of this journal, we outline their results very briefly. We use the common set-
theoretic notation.

First it is proved that add(Mon) = w; and cof(Mon) = ¢. The other
two invariants are more involved: non(Mon) > m,_ jinked, but non(Mon) >
Mg centered 18 consistent. Also, cov(Mon) < ¢ and cov(Mon) > cof(N) are
consistent. In order to get these result the authors use lower porous sets
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and, as a by-product, they also obtain a number of results regarding cardinal
invariants of the ideals of o-lower porous sets in Euclidean spaces.

Further results in this direction appear in a PhD thesis [8] of Arturo An-

tonio Martinez Celis Rodriguez.
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