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RECENT PROGRESS IN THE THEORY OF
MONOTONE METRIC SPACES

Abstract

A metric space (X, d) is called monotone if there is a linear order
< on X and c > 0 such that d(x, y) 6 c d(x, z) for all x < y < z in
X. A brief account of recent results in the theory of monotone spaces
is presented.

1 Monotone spaces

Let c > 0. A metric space (X, d) is called c-monotone if there is a linear order
< on X such that d(x, y) 6 c d(x, z) for all x < y < z in X. Say that (X, d) is
monotone if it is c-monotone for some c > 0.

This notion was conceived in [12] to aid a problem regarding Hausdorff
dimension. Since then a number of papers focusing on monotone metric spaces
were written, some of them published, others to appear, and several more
papers are under preparation, e.g. [6, 5, 2, 10, 13, 7, 3, 8] A brief review of the
state of the theory of monotone metric spaces appeared two years ago in [11].
The present paper gives a concise account of several recent papers [13, 7, 3, 8]
not covered by the review [11].

2 Functions with monotone graphs

My talk at the Real Analysis Symposium in Wooster 2010 initiated a discus-
sion of several participants on the differentiability properties of continuous
functions whose graphs ar monotone subsets of the plane. The discussion led
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to a paper [13] authored by O. Zindulka, M. Hrušák, T. Matrai, A. Nekvinda,
and V. Vlasák. All results of this section come from this paper.

Consider a continuous function f : I → R on an interval I. Denote its
graph by G(f) and let ψf : x 7→ (x, f(x)) be the natural parametrization
of G(f). It is easy to see that if the graph G(f) is a monotone subset of
the plane, then the natural order on G(f) defined by ψf (x) < ψf (y) iff x < y
witnesses monotonicity of G(f). This uniqueness of the witnessing order makes
investigation of monotone graphs easier.

It is not hard to see that if f is differentiable at every point, then G(f) is a
countable union of monotone sets. At first sight it seems that differentiability
of f and the monotonicity of G(f) may be related even closer. The original
hope was that if the graph is monotone, then f is differentiable at a substantial
portion of I. It however turned out that the situation is much more delicate.

Let us first have a look at the pointwise monotonicity features of the graph.
We need to introduce some notions and notation.

Definition 2.1. • Let f : I → R be a continuous function and c > 1. A point
y ∈ I is an M-point of f if there is c > 0 and ε > 0 such that

for all x ∈ (y − ε), z ∈ (y + ε) |ψ(x)− ψ(y)| 6 c|ψ(x)− ψ(z)|. (1)

• The set of all M-points of f is denoted M(f). The subset of the graph
{ψf (x) : x ∈M(f)} is denoted Mon(f).

Say that a metric space is σ-monotone if it is a countable union of monotone
subspaces. It is not difficult to prove that Mon(f) is σ-monotone. In partic-
ular, if all points of i are M-points, then G(f) is σ-monotone. In the other
direction, if G(f) is σ-monotone, then intM(f) is dense in I, i.e. Mon(G(f))
contains an open dense subset of G(f). Moreover, using Baire category argu-
ment one can prove a profound connection between M-points and monotone
subsets of Mon(f): Every monotone set M ⊆ G(f) is nowhere dense in G(f)
if and only if intM(f) = ∅.

Differentiability vs. pointwise monotonicity

Let us have a look at Dini derivatives atM-points. The four Dini derivatives of
f at x are denoted f+(x), f+(x), f−(x) and f−(x). If the four Dini derivatives
at x equal, the common value is of course the derivative f ′(x). If the two right
Dini derivatives at x are equal, the common value is called the right derivative
and denoted f+(x); and likewise for the left side. The set of points where the
derivative of f exists (infinite values are allowed) is denoted D(f).

Recall that a point x ∈ I is called a knot point of f if f−(x) = f+(x) =∞
and f−(x) = f+(x) = −∞. The set of knot points of f is denoted K(f).
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We also consider approximate Dini derivatives f+app(x), f+app(x), f−app(x) and
f−app(x) and the approximate derivative f ′app(x) and right and left approximate
derivatives. The set of points where the approximate derivative of f exists
is denoted Dapp(f). Approximate knot points are defined in the obvious way.
The set of approximate knot points of f is denoted Kapp(f).

Linear measure, i.e. 1-dimensional Hausdorff measure in R2 is denoted by
H 1.

Application of the ultimate version [1] of the Denjoy–Khintchine Theorem
toM-points shows that almost everyM-point is either a point of approximate
differentiability or a knot point.

Theorem 2.2. If f : I → R is continuous, then

(i) D(f) ⊆M(f),

(ii) there is a set E ⊆ I such that H 1(G(f)|E) = 0 and M(f) ⊆ Dapp(f) ∪
Kapp(f) ∪ E. In particular, almost every M-point x /∈ Dapp(f) is a knot
point.

A careful calculation of Hausdorff measure of the set of knot points that
satisfy (1) yields the following corollaries to the theorem.

Theorem 2.3. If f : I → R is continuous, then H 1(Mon(f)) is σ-finite. In
particular, dimH Mon(f) = 1.

Corollary 2.4. If f : I → R is continuous with a monotone graph, then
H 1(G(f)) is σ-finite. In particular, dimH G(f) = 1.

Functions with a monotone or σ-monotone graph

Let us now consider functions with a monotone graph. It turns out that for
such a function derivatives and approximate derivatives coincide:

Proposition 2.5. If f : I → R is continuous with a monotone graph, then
f+app(x) = f+(x) for all x ∈ I. A similar statement holds for all Dini deriva-
tives.

Thus the above theorems yield:

Corollary 2.6. If f : I → R is continuous function with a monotone graph,
then there is a set E ⊆ I such that H 1(G(f |E)) = 0 and I = D(f)∪K(f)∪E.
In particular, almost all points x /∈ D(f) are knot points.

Theorem 2.7. If f : I → R is a continuous function with a σ-monotone
graph, then f is differentiable at a perfectly dense set, i.e. a set whose inter-
section with every nonempty interval contains a perfect set.
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Corollary 2.8. If f : I → R is a continuous function, then intM(f) ⊆ D(f).

One would hope for better results, e.g. that a function with a monotone
graph be differentable almost everywhere. But it is not the case.

Theorem 2.9. For every c > 1 there is a continuous, almost nowhere differ-
entiable function f : [0, 1]→ R with a c-monotone graph.

Note that it follows from the above results that such a function necessarily
have the following properties:
• Every point of [0, 1] is an M-point,
• the function is almost nowhere approximately differentiable,
• almost all points are knot points (actually approximate knot points),
• the function has a derivative at a perfectly dense set.

M1-points and 1-monotone graphs

However, if the graph is 1-monotone, one can prove much more. AnM-point is
termed anM1-point, if it satisfies (1) of Definition 2.1 with c = 1. It turns out
that being an M1-point is almost everywhere equivalent to differentiability.

Theorem 2.10. If f : I → R is continuous, then there is a set E ⊆ I such
that H 1(G(f |E)) = 0 and D(f) ⊆ M1(f) ⊆ D(f) ∪ E. In particular, f is
differentiable at almost every M1-point.

One of the first questions regarding monotone graphs was whether a mono-
tone graph guarantees bounded variation. As we shall see later, it is not so,
but the conclusion holds for 1-monotone graphs:

Theorem 2.11. If I is compact and f : I → R is continuous with a 1-
monotone graph, then f is of bounded variation.

Corollary 2.12. If I is compact and f : I → R is continuous, then f is of
bounded variation if and only if it is a sum of two continuous functions with
1-monotone graphs.

3 1-monotone curves and sets

Motivated by the paper [13], A. Nekvinda, D. Pokorný and V. Vlasák wrote
a paper [7]. The questions they consider are:

(i) Suppose that I is compact and f : I → R has a finite derivative at
every point and a monotone graph. Does it follow that f is of bounded
variation?
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(ii) Suppose M ⊆ Rn is 1-monotone. Is it true that dimHM 6 1?

As to the first question, a rather involved construction gives a negative
answer:

Theorem 3.1. For every c > 1 there is a continuous function f : [0, 1] → R
such that
• f is infinitely differentiable at every x ∈ (0, 1],
• f ′(0) = 0,
• f is not of bounded variation,
• f has a c-monotone graph.

The second question is answered by the following theorem, with a highly
nontrivial proof.

Theorem 3.2. If M ⊆ Rn is a monotone, bounded set, then H 1(M) < ∞.
Therefore
• every monotone curve in Rn is of bounded variation,
• every monotone set in Rn is of σ-finite linear measure.

4 Lipschitz mappings onto cubes and Urbański
conjecture

Another paper [3] by T. Keleti, A. Máthé and O. Zindulka does not concentrate
on investigation of monotone spaces but rather an application.

In a recent paper [4], Mendel and Naor proved that every analytic metric
space contains sets of nearly the same Hausdorff dimension that are Lipschitz
equivalent to ultrametric spaces. In more detail:

Theorem 4.1 ([4]). Let X be an analytic metric space. For every ε > 0 there
is a compact set Y ⊆ X such that dimH Y > dimHX − ε and a bi-Lipschitz
mapping f : Y → Z onto an ultrametric space.

Keleti, Máthé and Zindulka noticed that since every ultrametric space
is monotone and monotonicity is invariant under bi-Lipschitz mappings, the
Mendel–Naor theorem yields

Theorem 4.2. Let X be an analytic metric space. For every ε > 0 there is a
compact monotone set Y ⊆ X such that dimH Y > dimHX − ε.

Since monotone spaces are, in a sense, rather simple, this trivial conse-
quence of Mendel–Naor theorem is likely to find applications. Keleti, Máthé
and Zindulka proved that monotone spaces nicely map onto cubes:
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Theorem 4.3. Let X be a compact monotone metric space and let k be a
positive integer. Then X can be mapped onto the k-dimensional cube [0, 1]k by
a Lipschitz map if and only if X has positive k-dimensional Hausdorff measure.

Combining the two theorems they obtained a general theorem on mapping
analytic spaces onto cubes by Lipschitz maps:

Theorem 4.4. Let X be an analytic metric space and let k be a positive
integer. If dimHX > k then X can be mapped onto the k-dimensional cube
[0, 1]k by a Lipschitz map.

This theorem can be used to solve a conjecture of Urbański. In [9] Urbański
introduced the transfinite Hausdorff dimension of a metric space X:

tHD(X) = sup{ind f(Y ) : Y ⊂ X, f : Y → Z Lipschitz, Z a metric space},

where ind denotes the transfinite small inductive topological dimension. He
showed that if X is a metric space with finite Hausdorff dimension, then
tHD(X) ≤ bdimHXc, where b.c denotes the floor function, and conjectured
that ifX is a metric space with finite Hausdorff dimension then either tHD(X) =
bdimHXc − 1 or tHD(X) = bdimHXc.

It is not hard to see that this conjecture fails in general: It is with ZFC
that there exist a set X ⊆ R2 of positive (outer) Lebesque measure and of
cardinality less that continuum. For such a set dimHX = 2 but tHD(X) =
0. However, Keleti, Máthé and Zindulka noticed that Theorem 4.4 yields
Urbański conjecture for analytic spaces:

Theorem 4.5. Let X be an analytic metric space.
• If dimHA is finite but not an integer, then tHD(A) = bdimHAc,
• if dimHA is an integer, then tHD(A) is dimHA or dimHA− 1,
• if dimHA =∞, then tHD(A) ≥ ω0.

5 Set-theoretic line of research

M. Hrušák and O. Zindulka [2] studied cardinal invariants of the ideal Mon
of σ-monotone subsets of the plane. Since this area is somewhat out of scope
of this journal, we outline their results very briefly. We use the common set-
theoretic notation.

First it is proved that add(Mon) = ω1 and cof(Mon) = c. The other
two invariants are more involved: non(Mon) > mσ-linked, but non(Mon) >
mσ-centered is consistent. Also, cov(Mon) < c and cov(Mon) > cof(N ) are
consistent. In order to get these result the authors use lower porous sets
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and, as a by-product, they also obtain a number of results regarding cardinal
invariants of the ideals of σ-lower porous sets in Euclidean spaces.

Further results in this direction appear in a PhD thesis [8] of Arturo An-
tonio Mart́ınez Celis Rodŕıguez.
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