
Real Analysis Exchange
Summer Symposium XXXVI, 2012, pp. 21–23

Krzysztof Chris Ciesielski , Department of Mathematics, West Virginia
University, Morgantown, WV 26506-6310 and Department of Radiology,
MIPG, University of Pennsylvania, Philadelphia, PA 19104-6021.
email: KCies@math.wvu.edu

Timothy Glatzer ,∗ Department of Mathematics, West Virginia University,
Morgantown, WV 26506-6310. email: tim.glatzer@gmail.com

LINEARLY CONTINUOUS FUNCTIONS:
REGULARITY AND GENERALIZATION

A function f : Rn → R is linearly continuous if for every line L ⊂ Rn,
the restriction f |L of f to L is continuous. It has been known for some time
that there are linearly continuous functions which are discontinuous. In this
talk, we discuss some results of the authors’ which describe how discontinuous
these functions can be. We present descriptive structural results for the sets
of discontinuity, and a partial characterization of these sets, as well as some
basic results on the Baire class on these functions. We discuss several related
classes of real functions on Rn and similar results which hold for them as well.
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