Martin Koc, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague 8 - Karlín, Czech Republic. email: koc@karlin.mff.cuni.cz

DIFFERENTIABLE EXTENSIONS FROM SPECIAL CLOSED SUBSETS OF \mathbb{R}^n

Results presented in the talk were obtained in cooperation with L. Zajíček and can be found in entirety in our joint article [3].

We dealt with results concerning extendibility of a differentiable function f defined on a closed set $F \subset \mathbb{R}^n$ to a differentiable function on \mathbb{R}^n . Probably the most known result of this type is the special case of the famous Whitney's Extension Theorem which concerns extendibility to a C^1 function on \mathbb{R}^n (see [2, Whitney's Extension Theorem] or [3, Theorem W]). In 1985, V. Aversa, M. Laczkovich and D. Preiss proved a result concerning extendibility to a differentiable (not necessarily C^1) function on \mathbb{R}^n (see [1] or [3, Theorem ALP]). We proved another extension result (Theorem 1 below) that is a natural joint generalization of these two theorems. Roughly, it can be described as a theorem on extendibility to a differentiable function with preserving the continuity of the derivative. In its formulation, we use the notion of a (relative) strict derivative recalled in the following definition.

Definition (Strict derivative). Let $\emptyset \neq F \subset \mathbb{R}^n$ be an arbitrary set and $f: F \to \mathbb{R}$ a function.

• We will say that $L_a \in \mathbb{R}^n$ is a strict derivative of f at $a \in F$ (with respect to F) if either $a \in \det F$ and

$$\lim_{\substack{y \to a \\ x \to a \\ x, y \in F, x \neq y}} \frac{f(y) - f(x) - L_a \cdot (y - x)}{|y - x|} = 0 \quad (\text{with } x = a, y = a \text{ allowed}),$$

or a is an isolated point of F.

Key words: Differentiable functions of several variables, Extensions

• We say that $L: F \to \mathbb{R}^n$ is a (relative) strict derivative of f if L(a) is a strict derivative of f at a for each $a \in F$.

Our main extension result can be stated as follows:

Theorem 1. [3, Theorem 3.1] Let $\emptyset \neq F \subset \mathbb{R}^n$ be a closed set, $f : F \to \mathbb{R}$ a function and $L : F \to \mathbb{R}^n$ a derivative of f such that $L \in B_1(F)$. Then there exists a function $\overline{f} : \mathbb{R}^n \to \mathbb{R}$ such that

- (i) \overline{f} is differentiable on \mathbb{R}^n ,
- (ii) $\overline{f}(x) = f(x)$ and $(\overline{f})'(x) = L(x)$ for $x \in F$,
- (iii) if $a \in F$, L is continuous at a and L(a) is a strict derivative of f at a, then $(\overline{f})'$ is continuous at a,
- (iv) \overline{f} is C^{∞} on $\mathbb{R}^n \setminus F$.

We also concentrated on extending from special closed subsets of \mathbb{R}^n that have in some sense large contingent cones in non-isolated points (see condition (C) introduced in Theorem 2). Recall the definition of tangent vectors and a contingent cone:

Definition (Tangent vectors and contingent cone). Let $H \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. A vector $v \in \mathbb{R}^n$ is called a *tangent vector to* H at x if there exist $\{x_k\}_{k=1}^{\infty} \subset H$ and $\{\alpha_k\}_{k=1}^{\infty} \subset [0,\infty)$ such that $x_k \to x$ and $\alpha_k(x_k - x) \to v$. The set of all tangent vectors to H at x is called a *contingent cone of* H at x and will be denoted by $\operatorname{Tan}(H, x)$.

Note that whenever $H \subset \mathbb{R}^n$ and $a \in H$, then the derivative f'(a) is determined uniquely for every function $f : H \to \mathbb{R}$ differentiable at a if and only if $\operatorname{Tan}(H, a)$ spans \mathbb{R}^n (see [1, Corollary 2]).

We proved the following result:

Theorem 2. [3, Theorem 4.6] Let $\emptyset \neq F \subset \mathbb{R}^n$ be a closed set, $f : F \to \mathbb{R}$ a function and let a derivative of f at x exist for every $x \in \text{der } F$. Moreover, let the following condition hold:

(C) for every $x \in \text{der } F$ there exist $r_x, d_x > 0$ such that

 $\inf \{ \sup \{ |\det(v_1,\ldots,v_n)| : v_1,\ldots,v_n \text{ unit vectors from } \operatorname{Tan}(F,y) \} :$

 $y \in \operatorname{der} F \cap B(x, r_x) \} > d_x.$

Then there exists a function $\overline{f}: \mathbb{R}^n \to \mathbb{R}$ such that

(i) $\overline{f}(x) = f(x)$ for every $x \in F$,

- (ii) \overline{f} is differentiable on \mathbb{R}^n and \overline{f} is C^{∞} on $\mathbb{R}^n \setminus F$,
- (iii) if either $a \in \operatorname{der} F$ and f is strictly differentiable at a, or $a \in F \setminus \operatorname{der} F$, then $(\overline{f})'$ is continuous at a.

This theorem yields a simply formulated C^1 extension result. Since for n = 1 the condition (C) is automatically satisfied, this result is in such a case merely a reformulation of the original result obtained by H. Whitney in 1934 (compare with [4, Theorem I]):

Corollary. [3, Corollary 4.7] Let $\emptyset \neq F \subset \mathbb{R}^n$ be a closed set, $f : F \to \mathbb{R}$ a function, let a strict derivative of f at x exist for every $x \in \text{der } F$ and let the condition (C) hold. Then there exists a C^1 extension of f on \mathbb{R}^n .

We further investigated the role of condition (C). If we replace this condition in the previous corollary by the assumption that $\operatorname{Tan}(F, x)$ spans \mathbb{R}^n for every $x \in \operatorname{der} F$, it is still possible to prove the existence of a differentiable extension of f (see Proposition 3 below). However, even a violation of condition (C) at merely one point suffices us to construct a counterexample to the existence of a continuously differentiable extension of f (see [3, Example 4.14]).

Proposition 3. [3, Proposition 4.10] Let $\emptyset \neq F \subset \mathbb{R}^n$ be a closed set, $f : F \to \mathbb{R}$ a strictly differentiable function and let $\operatorname{Tan}(F, x)$ span \mathbb{R}^n for every $x \in \operatorname{der} F$. Then there exists a differentiable extension of f defined on \mathbb{R}^n .

References

- V. Aversa, M. Laczkovich, D. Preiss, *Extension of differentiable functions*, Comment Math. Univ. Carolin. 26 (1985), 597–609.
- [2] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press (1992).
- [3] M. Koc, L. Zajíček, A joint generalization of Whitney's C¹ extension theorem and Aversa-Laczkovich-Preiss' extension theorem, J. Math. Anal. Appl. 388 (2012), 1027-1039.
- [4] H. Whitney, Differentiable functions defined in closed sets. I, Trans. Amer. Math. Soc. 36 (1934), 369–387.