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DIFFERENTIABLE EXTENSIONS FROM
SPECIAL CLOSED SUBSETS OF Rn

Results presented in the talk were obtained in cooperation with L. Zaj́ıček
and can be found in entirety in our joint article [3].

We dealt with results concerning extendibility of a differentiable function
f defined on a closed set F ⊂ Rn to a differentiable function on Rn. Probably
the most known result of this type is the special case of the famous Whitney’s
Extension Theorem which concerns extendibility to a C1 function on Rn (see
[2, Whitney’s Extension Theorem] or [3, Theorem W]). In 1985, V. Aversa,
M. Laczkovich and D. Preiss proved a result concerning extendibility to a dif-
ferentiable (not necessarily C1) function on Rn (see [1] or [3, Theorem ALP]).
We proved another extension result (Theorem 1 below) that is a natural joint
generalization of these two theorems. Roughly, it can be described as a theo-
rem on extendibility to a differentiable function with preserving the continuity
of the derivative. In its formulation, we use the notion of a (relative) strict
derivative recalled in the following definition.

Definition (Strict derivative). Let ∅ 6= F ⊂ Rn be an arbitrary set and
f : F → R a function.

• We will say that La ∈ Rn is a strict derivative of f at a ∈ F (with
respect to F ) if either a ∈ derF and

lim
y→a
x→a

x,y∈F, x6=y

f(y)− f(x)− La · (y − x)

|y − x|
= 0 (with x = a, y = a allowed),

or a is an isolated point of F .
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• We say that L : F → Rn is a (relative) strict derivative of f if L(a) is
a strict derivative of f at a for each a ∈ F .

Our main extension result can be stated as follows:

Theorem 1. [3, Theorem 3.1] Let ∅ 6= F ⊂ Rn be a closed set, f : F → R
a function and L : F → Rn a derivative of f such that L ∈ B1(F ). Then there
exists a function f : Rn → R such that

(i) f is differentiable on Rn,

(ii) f(x) = f(x) and (f)′(x) = L(x) for x ∈ F ,

(iii) if a ∈ F , L is continuous at a and L(a) is a strict derivative of f at a,
then (f)′ is continuous at a,

(iv) f is C∞ on Rn \ F .

We also concentrated on extending from special closed subsets of Rn that
have in some sense large contingent cones in non-isolated points (see condition
(C) introduced in Theorem 2). Recall the definition of tangent vectors and
a contingent cone:

Definition (Tangent vectors and contingent cone). Let H ⊂ Rn and x ∈ Rn.
A vector v ∈ Rn is called a tangent vector to H at x if there exist {xk}∞k=1 ⊂ H
and {αk}∞k=1 ⊂ [0,∞) such that xk → x and αk(xk − x) → v. The set of all
tangent vectors to H at x is called a contingent cone of H at x and will be
denoted by Tan(H,x).

Note that whenever H ⊂ Rn and a ∈ H, then the derivative f ′(a) is
determined uniquely for every function f : H → R differentiable at a if and
only if Tan(H, a) spans Rn (see [1, Corollary 2]).

We proved the following result:

Theorem 2. [3, Theorem 4.6] Let ∅ 6= F ⊂ Rn be a closed set, f : F → R
a function and let a derivative of f at x exist for every x ∈ derF . Moreover,
let the following condition hold:

(C) for every x ∈ derF there exist rx, dx > 0 such that

inf{sup{|det(v1, . . . , vn)| : v1, . . . , vn unit vectors from Tan(F, y)} :

y ∈ derF ∩B(x, rx)} > dx.

Then there exists a function f : Rn → R such that

(i) f(x) = f(x) for every x ∈ F ,
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(ii) f is differentiable on Rn and f is C∞ on Rn \ F ,

(iii) if either a ∈ derF and f is strictly differentiable at a, or a ∈ F \ derF ,
then (f)′ is continuous at a.

This theorem yields a simply formulated C1 extension result. Since for
n = 1 the condition (C) is automatically satisfied, this result is in such a case
merely a reformulation of the original result obtained by H. Whitney in 1934
(compare with [4, Theorem I]):

Corollary. [3, Corollary 4.7] Let ∅ 6= F ⊂ Rn be a closed set, f : F → R
a function, let a strict derivative of f at x exist for every x ∈ derF and let
the condition (C) hold. Then there exists a C1 extension of f on Rn.

We further investigated the role of condition (C). If we replace this condi-
tion in the previous corollary by the assumption that Tan(F, x) spans Rn for
every x ∈ derF , it is still possible to prove the existence of a differentiable
extension of f (see Proposition 3 below). However, even a violation of con-
dition (C) at merely one point suffices us to construct a counterexample to
the existence of a continuously differentiable extension of f (see [3, Example
4.14]).

Proposition 3. [3, Proposition 4.10] Let ∅ 6= F ⊂ Rn be a closed set, f :
F → R a strictly differentiable function and let Tan(F, x) span Rn for every
x ∈ derF . Then there exists a differentiable extension of f defined on Rn.
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