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FOURIER SERIES WITH THE
CONTINUOUS PRIMITIVE INTEGRAL

Abstract

Fourier series are considered for the space of periodic distributions
that are the distributional derivative of a continuous function. This
space of distributions is denoted Ac(T) and is a Banach space under the
Alexiewicz norm, ‖f‖T = sup|I|≤2π |

∫
I
f |, the supremum being taken

over intervals of length not exceeding 2π. It contains the periodic
functions integrable in the sense of Lebesgue and Henstock–Kurzweil.
Many of the properties of L1 Fourier series continue to hold for this
larger space, with the L1 norm replaced by the Alexiewicz norm. The
Riemann–Lebesgue lemma takes the form f̂(n) = o(n) as |n| → ∞.
The convolution is defined for f ∈ Ac(T) and g a periodic function of
bounded variation. There is the estimate ‖f ∗ g‖∞ ≤ ‖f‖T‖g‖BV . For
g ∈ L1(T), ‖f ∗ g‖T ≤ ‖f‖T‖g‖1. The convolution of f with a sequence
of summability kernels converges to f in the Alexiewicz norm. Let Dn
be the Dirichlet kernel and let f ∈ L1(T). Then ‖Dn ∗ f − f‖T → 0 as
n→∞.

1 Introduction and notation.

In this talk we consider Fourier series on the unit circle, T (“T” for thircle).
Proofs can be found in [4], where many further results also appear. Slides
from the talk are available at http://www.math.ualberta.ca/~etalvila/

research.html.
Progress in Fourier analysis has paralleled progress in theories of integra-

tion. We describe below the continuous primitive integral. This is an integral
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that includes the Lebesgue, Henstock–Kurzweil and wide Denjoy integrals. It
has a simple definition in terms of distributions. The space of distributions
integrable in this sense is a Banach space under the Alexiewicz norm. Many
properties of Fourier series that hold for L1 functions continue to hold in this
larger space with the L1 norm replaced by the Alexiewicz norm.

We use the following notation for distributions. The space of test functions
is D(R) = C∞c (R) = {φ :R → R | φ ∈ C∞(R) and supp(φ) is compact}. The
support of function φ is the closure of the set on which φ does not vanish and
is denoted supp(φ). Under usual pointwise operations D(R) is a linear space
over field R. In D(R) we have a notion of convergence. If {φn} ⊂ D(R) then
φn → 0 as n → ∞ if there is a compact set K ⊂ R such that for each n,

supp(φn) ⊂ K, and for each m ≥ 0 we have φ
(m)
n → 0 uniformly on K as

n → ∞. The distributions are denoted D′(R) and are the continuous linear
functionals on D(R). For T ∈ D′(R) and φ ∈ D(R) we write 〈T, φ〉 ∈ R. For
φ, ψ ∈ D(R) and a, b ∈ R we have 〈T, aφ + bψ〉 = a〈T, φ〉 + b〈T, ψ〉. And, if
φn → 0 in D(R) then 〈T, φn〉 → 0 in R. Linear operations are defined in D′(R)
by 〈aS + bT, φ〉 = a〈S, φ〉 + b〈T, φ〉 for S, T ∈ D′(R); a, b ∈ R and φ ∈ D(R).
If f ∈ L1

loc then 〈Tf , φ〉 =
∫∞
−∞ f(x)φ(x) dx defines a distribution Tf ∈ D′(R).

The integral exists as a Lebesgue integral. All distributions have derivatives
of all orders that are themselves distributions. For T ∈ D′(R) and φ ∈ D(R)
the distributional derivative of T is T ′ where 〈T ′, φ〉 = −〈T, φ′〉. If p :R→ R is
a function that is differentiable in the pointwise sense at x ∈ R then we write
its derivative as p′(x). For x ∈ R define the translation τx on distribution
T ∈ D′(R) by 〈τxT, φ〉 = 〈T, τ−xφ〉 for test function φ ∈ D(R) where τxφ(y) =
φ(y − x). A distribution T ∈ D′(R) is periodic if 〈τpT, φ〉 = 〈T, φ〉 for some
p > 0 and all φ ∈ D(R). The least such positive p is the period.

The Lebesgue integral of f : R → R is characterised by saying there is
an absolutely continuous function F (the primitive) such that F ′(x) = f(x)

for almost all x. The integral is then
∫ b
a
f(x) dx = F (b) − F (a). There is

a similar definition of the Henstock–Kurzweil integral using a larger class of
primitives. See [1]. The continuous primitive integral is defined using a con-
tinuous primitive function. Define the primitives by Bc(T) = {F :R→ R|F ∈
C(R), F (−π) = 0, F (x) = F (y) + nF (π) if y ∈ [−π, π), x = y + 2nπ for n ∈
Z}. It is easy to see that Bc(T) is a Banach space under the uniform norm
‖F‖T,∞ = sup|α−β|≤2π |F (α) − F (β)|. The integrable distributions are then
given by Ac(T) = {f ∈ D′(R) | f = F ′ for some F ∈ Bc(T)}. For a, b ∈ R the

integral of f ∈ Ac(T) is
∫ b
a
f = F (b) − F (a) where F ∈ Bc(T) and F ′ = f .

The distributional differential equation T ′ = 0 has only constant solutions
and we have made our primitives in Bc(T) vanish at −π so the primitive of a
distribution in Ac(T) is unique. See [2] for more on the continuous primitive
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integral.
If f :R→ R is a periodic function that is locally integrable in the Lebesgue,

Henstock–Kurzweil or wide Denjoy sense then Tf ∈ Ac(T). This follows since
the primitives for these integrals are continuous functions. As well, if F ∈
Bc(T) is a function of Weierstrass type that is continuous but has a pointwise
derivative nowhere then the distributional derivative of F exists and F ′ ∈
Ac(T). If F is a continuous singular function, so that F ′(x) = 0 a.e., then

F ′ ∈ Ac(T) and the continuous primitive integral is
∫ b
a
F ′ = F (b) − F (a). In

this case, F ′ ∈ L1(T) but the Lebesgue integral gives
∫ b
a
F ′(x) dx = 0.

The Alexiewicz norm of f ∈ Ac(T) is ‖f‖T = sup|I|≤2π |
∫
I
f |, the supre-

mum being taken over intervals of length not exceeding 2π. We have ‖f‖T =
‖F‖T,∞ = max|β−α|≤2π |F (β)− F (α)| where F ∈ Bc(T) is the primitive of f .
The integral provides a linear isometry and isomorphism between Ac(T) and
Bc(T). Define Φ:Ac(T)→ Bc(T) by Φ[f ](x) =

∫ x
−π f . Then Φ is a linear bijec-

tion and ‖f‖T = ‖Φ[f ]‖T,∞. Hence, Ac(T) is a Banach space. The spaces of
periodic Lebesgue, Henstock–Kurzweil and wide Denjoy integrable functions
are all subspaces of Ac(T) but are not complete in the Alexiewicz norm. The
space Ac(T) furnishes their completion.

The multipliers and dual space of Ac(T) are given by the periodic func-
tions of bounded variation, BV(T). Using a Riemann–Stieltjes integral, the
integration by parts formula is∫ x

−π
fg = F (x)g(x)−

∫ x

−π
F (t) dg(t), x ∈ [−π, π). (1)

From this we get the following version of the Hölder inequality.

Proposition 1 (Hölder inequality). Let f ∈ Ac(T). If g ∈ BV(T) then∣∣∣∫ π−π fg∣∣∣ ≤ | ∫ π−π f | inf |g|+ ‖f‖TV g ≤ ‖f‖T(‖g‖∞ + V g).

2 Fourier coefficients.

Let en(t) = eint. If f ∈ Ac(T) then the Fourier coefficients of f are f̂(n) =∫ π
−π fe−n =

∫ π
−π f(t)e−int dt, where n ∈ Z. Let F (x) =

∫ x
−π f be the primitive

of f . Integrating by parts as in (1) gives

f̂(n) = (−1)nF (π) + in

∫ π

−π
F (t)e−int dt. (2)

This last integral is the Riemann integral of a continuous function. Formula
(2) can be used as an alternative definition of f̂(n).
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Theorem 2. Let f ∈ Ac(T). Then (a) |f̂(n)| ≤ |F (π)| + |n|
∫ π
−π |F | where

F (x) =
∫ x
−π f (b) for n 6= 0, |f̂(n)| ≤ 4

√
2 |n|‖f‖T (c) f̂(n) = o(n) as |n| → ∞

and this estimate is sharp.

Part (c) is a version of the Riemann–Lebesgue lemma for the continuous
primitive integral.

The next theorem shows that when we have a sequence converging in the
Alexiewicz norm, the Fourier coefficients also converge.

Theorem 3. For j ∈ N, let f, fj ∈ Ac(T) such that ‖fj−f‖T → 0 as j →∞.

Then for each n ∈ Z we have f̂j(n)→ f̂(n) as j →∞. The convergence need
not be uniform in n ∈ Z.

3 Convolution.

For f ∈ Ac(T) and g ∈ BV(T) the convolution is
∫ π
−π(f ◦ rx)g where rx(t) =

x − t. We write this as f ∗ g(x) =
∫ π
−π f(x − t)g(t) dt. This integral exists

for all such f and g. The convolution inherits smoothness properties from f
and g. The convolution was considered for the continuous primitive integral
on the real line in [3]. Many of the results of that paper are easily adapted to
the setting of T, especially differentiation and integration theorems which we
do not reproduce here.

Theorem 4. Let f ∈ Ac(T) and let g ∈ BV(T). Then (a) f ∗ g ∈ C(T) (b)
f ∗ g = g ∗ f (c) ‖f ∗ g‖∞ ≤ ‖f‖T‖g‖BV (d) for y ∈ R we have τy(f ∗ g) =
(τyf) ∗ g = f ∗ (τyg). (e) If h ∈ L1(T) then f ∗ (g ∗ h) = (f ∗ g) ∗ h ∈ C(T).

(f) We have f̂ ∗ g(n) = f̂(n)ĝ(n) for all n ∈ Z.

Convolutions can also be defined for f ∈ Ac(T) and g ∈ L1(T) using the
density of L1(T) in Ac(T). See [4] for details.

4 Convergence.

The series
∑∞
−∞ f̂(n)eint is known as the Fourier series of f . If f is a smooth

enough function then the Fourier series of f converges to f pointwise. For ex-
ample, if the pointwise derivative f ′(x) exists then the Fourier series converges
to f at x.

First we consider summability kernels.

Definition 5. A summability kernel is a sequence {kn} ⊂ BV(T) such that∫ π
−π kn = 1, limn→∞

∫
|s|>δ |kn(s)| ds = 0 for each 0 < δ ≤ π and there is

M ∈ R so that ‖kn‖1 ≤M for all n ∈ N.
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Theorem 6. Let f ∈ Ac(T). Let kn be a summability kernel. Then ‖f ∗ kn−
f‖T → 0 as n→∞.

A commonly used summability kernel is the Fejér kernel,

kn(t) =
1

2π

n∑
k=−n

(
1− |k|

n+ 1

)
eikt =

1

2π(n+ 1)

[
sin((n+ 1)t/2)

sin(t/2)

]2
.

Lemma 7. Let f ∈ Ac(T). Then f∗en(x) = f̂(n)einx. Let g(t) =
∑n
−n akek(t)

for a sequence {ak} ⊂ R. Then f ∗ g(x) =
∑n
−n akf̂(k)eikx.

The proof follows from the identity en(x− t) = en(x)en(−t) and linearity
of the integral.

The lemma allows us to prove that trigonometric polynomials are dense
in Ac(T) and gives a uniqueness result. Let kn be the Fejér kernel and define
σn[f ] = kn ∗ f . From Theorem 6 we have σn[f ] → f in the Alexiewicz
norm. The Lemma shows σn[f ] is a trigonometric polynomial. Hence, the
trigonometric polynomials are dense in Ac(T).

Theorem 8. Let f ∈ Ac(T). The trigonometric polynomials are dense in
Ac(T);

σn[f ](t) =
1

2π

n∑
k=−n

(
1− |k|

n+ 1

)
f̂(k)eikt and lim

n→∞
‖f − σn[f ]‖T = 0. (3)

If f̂(n) = 0 for all n ∈ Z then f = 0.

For n ≥ 0 define the Dirichlet kernel Dn(t) =
∑n
−n e

ikt = sin[(n +
1/2)t]/ sin(t/2). Notice that according to the definition in Theorem 6, Dn

is not a summability kernel. In fact, ‖Dn‖1 ∼ (4/π2) log(n) as n→∞. How-
ever, ‖Dn‖T are bounded. This shows that Dn ∗ f converges to f in ‖ · ‖T for
f ∈ L1(T).

Theorem 9. The sequence ‖Dn‖T is bounded. Let f ∈ L1(T). Then ‖Dn ∗
f − f‖T → 0 as n→∞.

Since the Dirichlet kernels are not uniformly bounded in the L1 norm there
is a function f ∈ Ac(T) such that ‖Dn ∗ f − f‖T 6→ 0. See [4] for an example.
This example, together with Theorem 9 shows the value of the Alexiewicz
norm, even for L1 functions.
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