Erik Talvila, Department of Mathematics and Statistics, University of the Fraser Valley, Chilliwack, BC V2R 0N3, Canada. email: Erik.Talvila@ufv.ca

FOURIER SERIES WITH THE CONTINUOUS PRIMITIVE INTEGRAL

Abstract

Fourier series are considered for the space of periodic distributions that are the distributional derivative of a continuous function. This space of distributions is denoted $\mathcal{A}_c(\mathbb{T})$ and is a Banach space under the Alexiewicz norm, $||f||_{\mathbb{T}} = \sup_{|I| \leq 2\pi} |\int_I f|$, the supremum being taken over intervals of length not exceeding 2π . It contains the periodic functions integrable in the sense of Lebesgue and Henstock–Kurzweil. Many of the properties of L^1 Fourier series continue to hold for this larger space, with the L^1 norm replaced by the Alexiewicz norm. The Riemann–Lebesgue lemma takes the form $\hat{f}(n) = o(n)$ as $|n| \to \infty$. The convolution is defined for $f \in \mathcal{A}_c(\mathbb{T})$ and g a periodic function of bounded variation. There is the estimate $||f * g||_{\infty} \leq ||f||_{\mathbb{T}} ||g||_{BV}$. For $g \in L^1(\mathbb{T})$, $||f * g||_{\mathbb{T}} \leq ||f||_{\mathbb{T}} ||g||_{1}$. The convolution of f with a sequence of summability kernels converges to f in the Alexiewicz norm. Let D_n be the Dirichlet kernel and let $f \in L^1(\mathbb{T})$. Then $||D_n * f - f||_{\mathbb{T}} \to 0$ as $n \to \infty$.

1 Introduction and notation.

In this talk we consider Fourier series on the unit circle, \mathbb{T} ("T" for thirde). Proofs can be found in [4], where many further results also appear. Slides from the talk are available at http://www.math.ualberta.ca/~etalvila/research.html.

Progress in Fourier analysis has paralleled progress in theories of integration. We describe below the *continuous primitive integral*. This is an integral

30

Mathematical Reviews subject classification: Primary: 26A39, 42A16, 46F10

Key words: Fourier series, convolution, distributional integral, continuous primitive integral, Henstock–Kurzweil integral, Schwartz distribution, generalised function

that includes the Lebesgue, Henstock–Kurzweil and wide Denjoy integrals. It has a simple definition in terms of distributions. The space of distributions integrable in this sense is a Banach space under the Alexiewicz norm. Many properties of Fourier series that hold for L^1 functions continue to hold in this larger space with the L^1 norm replaced by the Alexiewicz norm.

We use the following notation for distributions. The space of *test functions* is $\mathcal{D}(\mathbb{R}) = C_c^{\infty}(\mathbb{R}) = \{\phi : \mathbb{R} \to \mathbb{R} \mid \phi \in C^{\infty}(\mathbb{R}) \text{ and } \operatorname{supp}(\phi) \text{ is compact} \}$. The support of function ϕ is the closure of the set on which ϕ does not vanish and is denoted supp (ϕ) . Under usual pointwise operations $\mathcal{D}(\mathbb{R})$ is a linear space over field \mathbb{R} . In $\mathcal{D}(\mathbb{R})$ we have a notion of convergence. If $\{\phi_n\} \subset \mathcal{D}(\mathbb{R})$ then $\phi_n \to 0$ as $n \to \infty$ if there is a compact set $K \subset \mathbb{R}$ such that for each n, $\operatorname{supp}(\phi_n) \subset K$, and for each $m \ge 0$ we have $\phi_n^{(m)} \to 0$ uniformly on K as $n \to \infty$. The distributions are denoted $\mathcal{D}'(\mathbb{R})$ and are the continuous linear functionals on $\mathcal{D}(\mathbb{R})$. For $T \in \mathcal{D}'(\mathbb{R})$ and $\phi \in \mathcal{D}(\mathbb{R})$ we write $\langle T, \phi \rangle \in \mathbb{R}$. For $\phi, \psi \in \mathcal{D}(\mathbb{R})$ and $a, b \in \mathbb{R}$ we have $\langle T, a\phi + b\psi \rangle = a \langle T, \phi \rangle + b \langle T, \psi \rangle$. And, if $\phi_n \to 0$ in $\mathcal{D}(\mathbb{R})$ then $\langle T, \phi_n \rangle \to 0$ in \mathbb{R} . Linear operations are defined in $\mathcal{D}'(\mathbb{R})$ by $\langle aS + bT, \phi \rangle = a \langle S, \phi \rangle + b \langle T, \phi \rangle$ for $S, T \in \mathcal{D}'(\mathbb{R})$; $a, b \in \mathbb{R}$ and $\phi \in \mathcal{D}(\mathbb{R})$. If $f \in L^1_{loc}$ then $\langle T_f, \phi \rangle = \int_{-\infty}^{\infty} f(x)\phi(x) \, dx$ defines a distribution $T_f \in \mathcal{D}'(\mathbb{R})$. The integral exists as a Lebesgue integral. All distributions have derivatives of all orders that are themselves distributions. For $T \in \mathcal{D}'(\mathbb{R})$ and $\phi \in \mathcal{D}(\mathbb{R})$ the distributional derivative of T is T' where $\langle T', \phi \rangle = -\langle T, \phi' \rangle$. If $p: \mathbb{R} \to \mathbb{R}$ is a function that is differentiable in the pointwise sense at $x \in \mathbb{R}$ then we write its derivative as p'(x). For $x \in \mathbb{R}$ define the translation τ_x on distribution $T \in \mathcal{D}'(\mathbb{R})$ by $\langle \tau_x T, \phi \rangle = \langle T, \tau_{-x} \phi \rangle$ for test function $\phi \in \mathcal{D}(\mathbb{R})$ where $\tau_x \phi(y) =$ $\phi(y-x)$. A distribution $T \in \mathcal{D}'(\mathbb{R})$ is *periodic* if $\langle \tau_p T, \phi \rangle = \langle T, \phi \rangle$ for some p > 0 and all $\phi \in \mathcal{D}(\mathbb{R})$. The least such positive p is the *period*.

The Lebesgue integral of $f: \mathbb{R} \to \mathbb{R}$ is characterised by saying there is an absolutely continuous function F (the primitive) such that F'(x) = f(x)for almost all x. The integral is then $\int_a^b f(x) dx = F(b) - F(a)$. There is a similar definition of the Henstock–Kurzweil integral using a larger class of primitives. See [1]. The continuous primitive integral is defined using a continuous primitive function. Define the primitives by $\mathcal{B}_c(\mathbb{T}) = \{F: \mathbb{R} \to \mathbb{R} | F \in C(\mathbb{R}), F(-\pi) = 0, F(x) = F(y) + nF(\pi) \text{ if } y \in [-\pi, \pi), x = y + 2n\pi \text{ for } n \in \mathbb{Z}\}$. It is easy to see that $\mathcal{B}_c(\mathbb{T})$ is a Banach space under the uniform norm $\|F\|_{\mathbb{T},\infty} = \sup_{|\alpha-\beta| \leq 2\pi} |F(\alpha) - F(\beta)|$. The integrable distributions are then given by $\mathcal{A}_c(\mathbb{T}) = \{f \in \mathcal{D}'(\mathbb{R}) \mid f = F' \text{ for some } F \in \mathcal{B}_c(\mathbb{T})\}$. For $a, b \in \mathbb{R}$ the integral of $f \in \mathcal{A}_c(\mathbb{T})$ is $\int_a^b f = F(b) - F(a)$ where $F \in \mathcal{B}_c(\mathbb{T})$ and F' = f. The distributional differential equation T' = 0 has only constant solutions and we have made our primitives in $\mathcal{B}_c(\mathbb{T})$ vanish at $-\pi$ so the primitive of a distribution in $\mathcal{A}_c(\mathbb{T})$ is unique. See [2] for more on the continuous primitive integral.

If $f:\mathbb{R}\to\mathbb{R}$ is a periodic function that is locally integrable in the Lebesgue, Henstock–Kurzweil or wide Denjoy sense then $T_f \in \mathcal{A}_c(\mathbb{T})$. This follows since the primitives for these integrals are continuous functions. As well, if $F \in \mathcal{B}_c(\mathbb{T})$ is a function of Weierstrass type that is continuous but has a pointwise derivative nowhere then the distributional derivative of F exists and $F' \in \mathcal{A}_c(\mathbb{T})$. If F is a continuous singular function, so that F'(x) = 0 a.e., then $F' \in \mathcal{A}_c(\mathbb{T})$ and the continuous primitive integral is $\int_a^b F' = F(b) - F(a)$. In this case, $F' \in L^1(\mathbb{T})$ but the Lebesgue integral gives $\int_a^b F'(x) dx = 0$.

The Alexiewicz norm of $f \in \mathcal{A}_c(\mathbb{T})$ is $||f||_{\mathbb{T}} = \sup_{|I| \leq 2\pi} |\int_I f|$, the supremum being taken over intervals of length not exceeding 2π . We have $||f||_{\mathbb{T}} =$ $||F||_{\mathbb{T},\infty} = \max_{|\beta-\alpha| \leq 2\pi} |F(\beta) - F(\alpha)|$ where $F \in \mathcal{B}_c(\mathbb{T})$ is the primitive of f. The integral provides a linear isometry and isomorphism between $\mathcal{A}_c(\mathbb{T})$ and $\mathcal{B}_c(\mathbb{T})$. Define $\Phi:\mathcal{A}_c(\mathbb{T}) \to \mathcal{B}_c(\mathbb{T})$ by $\Phi[f](x) = \int_{-\pi}^x f$. Then Φ is a linear bijection and $||f||_{\mathbb{T}} = ||\Phi[f]||_{\mathbb{T},\infty}$. Hence, $\mathcal{A}_c(\mathbb{T})$ is a Banach space. The spaces of periodic Lebesgue, Henstock–Kurzweil and wide Denjoy integrable functions are all subspaces of $\mathcal{A}_c(\mathbb{T})$ but are not complete in the Alexiewicz norm. The space $\mathcal{A}_c(\mathbb{T})$ furnishes their completion.

The multipliers and dual space of $\mathcal{A}_c(\mathbb{T})$ are given by the periodic functions of bounded variation, $\mathcal{BV}(\mathbb{T})$. Using a Riemann–Stieltjes integral, the integration by parts formula is

$$\int_{-\pi}^{x} fg = F(x)g(x) - \int_{-\pi}^{x} F(t) \, dg(t), \quad x \in [-\pi, \pi).$$
(1)

From this we get the following version of the Hölder inequality.

Proposition 1 (Hölder inequality). Let $f \in \mathcal{A}_c(\mathbb{T})$. If $g \in \mathcal{BV}(\mathbb{T})$ then $\left|\int_{-\pi}^{\pi} fg\right| \leq \left|\int_{-\pi}^{\pi} f|\inf|g| + \|f\|_{\mathbb{T}} Vg \leq \|f\|_{\mathbb{T}} (\|g\|_{\infty} + Vg).$

2 Fourier coefficients.

Let $e_n(t) = e^{int}$. If $f \in \mathcal{A}_c(\mathbb{T})$ then the Fourier coefficients of f are $\hat{f}(n) = \int_{-\pi}^{\pi} f e_{-n} = \int_{-\pi}^{\pi} f(t) e^{-int} dt$, where $n \in \mathbb{Z}$. Let $F(x) = \int_{-\pi}^{x} f$ be the primitive of f. Integrating by parts as in (1) gives

$$\hat{f}(n) = (-1)^n F(\pi) + in \int_{-\pi}^{\pi} F(t) e^{-int} dt.$$
(2)

This last integral is the Riemann integral of a continuous function. Formula (2) can be used as an alternative definition of $\hat{f}(n)$.

Theorem 2. Let $f \in \mathcal{A}_c(\mathbb{T})$. Then (a) $|\hat{f}(n)| \leq |F(\pi)| + |n| \int_{-\pi}^{\pi} |F|$ where $F(x) = \int_{-\pi}^{x} f(b)$ for $n \neq 0$, $|\hat{f}(n)| \leq 4\sqrt{2} |n| ||f||_{\mathbb{T}}$ (c) $\hat{f}(n) = o(n)$ as $|n| \to \infty$ and this estimate is sharp.

Part (c) is a version of the Riemann–Lebesgue lemma for the continuous primitive integral.

The next theorem shows that when we have a sequence converging in the Alexiewicz norm, the Fourier coefficients also converge.

Theorem 3. For $j \in \mathbb{N}$, let $f, f_j \in \mathcal{A}_c(\mathbb{T})$ such that $||f_j - f||_{\mathbb{T}} \to 0$ as $j \to \infty$. Then for each $n \in \mathbb{Z}$ we have $\hat{f}_j(n) \to \hat{f}(n)$ as $j \to \infty$. The convergence need not be uniform in $n \in \mathbb{Z}$.

3 Convolution.

For $f \in \mathcal{A}_c(\mathbb{T})$ and $g \in \mathcal{BV}(\mathbb{T})$ the convolution is $\int_{-\pi}^{\pi} (f \circ r_x)g$ where $r_x(t) = x - t$. We write this as $f * g(x) = \int_{-\pi}^{\pi} f(x - t)g(t) dt$. This integral exists for all such f and g. The convolution inherits smoothness properties from f and g. The convolution was considered for the continuous primitive integral on the real line in [3]. Many of the results of that paper are easily adapted to the setting of \mathbb{T} , especially differentiation and integration theorems which we do not reproduce here.

Theorem 4. Let $f \in \mathcal{A}_c(\mathbb{T})$ and let $g \in \mathcal{BV}(\mathbb{T})$. Then (a) $f * g \in C(\mathbb{T})$ (b) f * g = g * f (c) $||f * g||_{\infty} \leq ||f||_{\mathbb{T}} ||g||_{\mathcal{BV}}$ (d) for $y \in \mathbb{R}$ we have $\tau_y(f * g) = (\tau_y f) * g = f * (\tau_y g)$. (e) If $h \in L^1(\mathbb{T})$ then $f * (g * h) = (f * g) * h \in C(\mathbb{T})$. (f) We have $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$ for all $n \in \mathbb{Z}$.

Convolutions can also be defined for $f \in \mathcal{A}_c(\mathbb{T})$ and $g \in L^1(\mathbb{T})$ using the density of $L^1(\mathbb{T})$ in $\mathcal{A}_c(\mathbb{T})$. See [4] for details.

4 Convergence.

The series $\sum_{-\infty}^{\infty} \hat{f}(n)e^{int}$ is known as the Fourier series of f. If f is a smooth enough function then the Fourier series of f converges to f pointwise. For example, if the pointwise derivative f'(x) exists then the Fourier series converges to f at x.

First we consider summability kernels.

Definition 5. A summability kernel is a sequence $\{k_n\} \subset \mathcal{BV}(\mathbb{T})$ such that $\int_{-\pi}^{\pi} k_n = 1$, $\lim_{n\to\infty} \int_{|s|>\delta} |k_n(s)| \, ds = 0$ for each $0 < \delta \leq \pi$ and there is $M \in \mathbb{R}$ so that $||k_n||_1 \leq M$ for all $n \in \mathbb{N}$.

Theorem 6. Let $f \in \mathcal{A}_c(\mathbb{T})$. Let k_n be a summability kernel. Then $||f * k_n - f||_{\mathbb{T}} \to 0$ as $n \to \infty$.

A commonly used summability kernel is the Fejér kernel,

$$k_n(t) = \frac{1}{2\pi} \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1} \right) e^{ikt} = \frac{1}{2\pi(n+1)} \left[\frac{\sin((n+1)t/2)}{\sin(t/2)} \right]^2.$$

Lemma 7. Let $f \in \mathcal{A}_c(\mathbb{T})$. Then $f * e_n(x) = \hat{f}(n)e^{inx}$. Let $g(t) = \sum_{-n}^n a_k e_k(t)$ for a sequence $\{a_k\} \subset \mathbb{R}$. Then $f * g(x) = \sum_{-n}^n a_k \hat{f}(k)e^{ikx}$.

The proof follows from the identity $e_n(x-t) = e_n(x)e_n(-t)$ and linearity of the integral.

The lemma allows us to prove that trigonometric polynomials are dense in $\mathcal{A}_c(\mathbb{T})$ and gives a uniqueness result. Let k_n be the Fejér kernel and define $\sigma_n[f] = k_n * f$. From Theorem 6 we have $\sigma_n[f] \to f$ in the Alexiewicz norm. The Lemma shows $\sigma_n[f]$ is a trigonometric polynomial. Hence, the trigonometric polynomials are dense in $\mathcal{A}_c(\mathbb{T})$.

Theorem 8. Let $f \in \mathcal{A}_c(\mathbb{T})$. The trigonometric polynomials are dense in $\mathcal{A}_c(\mathbb{T})$;

$$\sigma_n[f](t) = \frac{1}{2\pi} \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \hat{f}(k) e^{ikt} \text{ and } \lim_{n \to \infty} \|f - \sigma_n[f]\|_{\mathbb{T}} = 0.$$
(3)

If $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$ then f = 0.

For $n \geq 0$ define the Dirichlet kernel $D_n(t) = \sum_{n=n}^n e^{ikt} = \sin[(n + 1/2)t]/\sin(t/2)$. Notice that according to the definition in Theorem 6, D_n is not a summability kernel. In fact, $||D_n||_1 \sim (4/\pi^2)\log(n)$ as $n \to \infty$. However, $||D_n||_{\mathbb{T}}$ are bounded. This shows that $D_n * f$ converges to f in $|| \cdot ||_{\mathbb{T}}$ for $f \in L^1(\mathbb{T})$.

Theorem 9. The sequence $||D_n||_{\mathbb{T}}$ is bounded. Let $f \in L^1(\mathbb{T})$. Then $||D_n * f - f||_{\mathbb{T}} \to 0$ as $n \to \infty$.

Since the Dirichlet kernels are not uniformly bounded in the L^1 norm there is a function $f \in \mathcal{A}_c(\mathbb{T})$ such that $||D_n * f - f||_{\mathbb{T}} \to 0$. See [4] for an example. This example, together with Theorem 9 shows the value of the Alexiewicz norm, even for L^1 functions.

References

- [1] R.A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*, American Mathematical Society, Providence, 1994.
- [2] E. Talvila, The distributional Denjoy integral, Real Anal. Exchange 33 (2008), 51–82.
- [3] E. Talvila, Convolutions with the continuous primitive integral, Abstr. Appl. Anal. **2009** (2009) Art. ID 307404, 18 pp.
- [4] E. Talvila, *Fourier series with the continuous primitive integral*, Journal of Fourier analysis and applications, **18** (2012), 27–44.