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ARE FUNCTIONS WITH A MONOTONE
GRAPH SMOOTH?

Abstract

A metric space (X, d) is called monotone if there is a linear order
< on X and c > 0 such that d(x, y) 6 c d(x, z) for all x < y < z in
X. We present a brief review of properties of graphs of functions with
a monotone graph.

1 Introduction.

Monotone metric spaces were introduced in [4, 3]. By one of the equivalent
definitions, given c > 1, a metric space (X, d) is called c-monotone if there is
a linear order < on X such that if x < y < z, then

max
(
d(x, y), d(y, z)

)
6 c d(x, z).

The order < and constant c are termed the witnessing order and witnessing
constant, respectively. A metric space is called monotone if it is c-monotone
for some c, and σ-monotone if it is a countable union of monotone spaces.

Quite a number of papers are written or under preparation on the subject:
[4, 5, 6, 2, 3, 1]. A brief review is given in my last year report.

In this report we focus on properties of continuous functions that have a
monotone or σ-monotone graph.

Let us mention some properties of monotone sets in Euclidean spaces.
Hm and dimH denote, respectively, the m-dimensional Hausdorff measure and
Hausdorff dimension.
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Theorem 1.1. If X ⊆ Rn is c-monotone, then dimHX 6 n − q

c ln(c+ 1)
,

where q is an absolute constant. In particular, dimHX < n.

Corollary 1.2. If X ⊆ Rn is σ-monotone, then it is Lebesgue-null.

Recall that a set A ⊆ Rn is m-rectifiable if Hm-almost all points of A
can be covered by countably many Cm-surfaces, and that B ⊆ Rn is purely
m-unrectifiable if Hm(X ∩A) = 0 for each m-rectifiable set A ⊆ Rn.

Corollary 1.3. A σ-monotone set X ⊆ Rn is purely m-unrectifiable for each
m > 2.

Recall that a set X ⊆ Rn is lower porous if there is p > 0 such that for
every x ∈ Rn and every r > 0 there is y ∈ Rn such that B(y, pr) ⊆ B(x, r)\X.

Theorem 1.4. Every monotone set in Rn is lower porous.

On the other hand, monotone sets approximate any Borel set in the fol-
lowing sense.

Theorem 1.5. Every Borel set B ⊆ Rn contains a σ-monotone set X ⊆ B
such that dimHX = dimHB.

2 Functions with a monotone graph are not nowhere dif-
ferentiable.

A curve in Rn is an image of a one-to-one continuous mapping ψ : [0, 1]→ Rn.
The mapping ψ is a parametrization of C. Note that since any curve C is
connected, there are only two linear orders that can witness monotonicity of
C. Moreover one of them is the reverse of the other. Since being c-monotone
is invariant with respect to reversing the witnessing order, it does not matter
which of them we choose. Overall, given a curve C and (any) parametrization
ψ of of C, the curve C is c-monotone if and only if for all x < y < z ∈ [0, 1]

|ψ(x)− ψ(y)| 6 c|ψ(x)− ψ(z)|, (1)

|ψ(z)− ψ(y)| 6 c|ψ(x)− ψ(z)|. (2)

Hence restricting ourselves to curves, the formula defining monotonicity is
remarkably less complex.

It is easy to show that a C1-curve is σ-monotone. One may ask if there
is a converse, i.e. if monotone curves possess some smoothness properties. It
turns out that it is not so: The well-known von Koch curve is monotone and
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yet its Hausdorff dimension is strictly bigger than 1 and it does not have a
tangent line at any point. The calculation of the precise value of the witnessing
constant for von Koch curve is in progress.

But what if we further restrict ourselves to graphs of continuous functions?
Such a graph is of course a curve. Let f : [0, 1]→ R be a continuous function.
Formally there is no difference between f and its graph, but confusion may
arise for instance from “f is monotone”. Therefore we use f when referring to
the graph of f as a pointset in the plane. Given E ⊆ [0, 1], denote f|E the
graph of f restricted to E.

Theorem 2.1. Let f : [0, 1] → R be a continuous function with a monotone
graph. Then H 1(f) is σ-finite. In particular, dimH f = 1.

Theorem 2.2. Let f : [0, 1] → R be a continuous function with a monotone
graph. Then there are Borel sets A,B such that A ∪B = [0, 1] and

(i) H 1(f|A) <∞,

(ii) f ′(x) exists for each x ∈ B.

Corollary 2.3. Let f : [0, 1]→ R be a continuous function with a σ-monotone
graph. Then f is differentiable at a set that meets every interval at a perfect
set.

So monotone graphs of continuous functions indeed possess some weak
smoothness properties that curves may lack. Can one hope that the latter
corollary can be strengthened to “continuous function with a monotone graph
is differentiable almost everywhere”?

3 Non-differentiable functions with a monotone graph.

The answer is “no”: Immediately after my presentation of the above results
at the conference a discussion started. Within two days Tamás Mátrai came
up with an idea that was developed by Václav Vlasák. Their efforts lead to
an example of a continuous function that has a monotone graph and yet it is
almost nowhere differentiable.

Theorem 3.1. For any c > 1 there is a continuous function f : [0, 1] → R
such that

(i) the graph of f is c-monotone,

(ii) both one-sided approximate derivatives fail to exist almost everywhere.
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In particular, f is almost nowhere differentiable.

So Theorem 2.2 and Corollary 2.3 is the best one can get for differentiability
of functions with a monotone graph.

One may ask if there is such an example even for c = 1. Discussion with
Aleš Nekvinda resulted in a negative answer:

Proposition 3.2. If f is continuous and f is 1-monotone, then f is differen-
tiable almost everywhere.

4 Absolutely continuous function with a non-σ-monotone
graph.

So monotone graph does not imply differentiability. When I got back to Mex-
ico, I discussed with Michael Hrušák the dual question: Does differentiability
ensure a σ-monotone graph?

Theorem 4.1. There is an absolutely continuous function whose graph is not
σ-monotone.

The details, proofs and some more results will appear in a paper that is in
the final stage of preparation. The approximate set of authors is: me, Pieter
Allaart, Michael Hrušák, Tamás Mátrai, Aleš Nekvinda and Václav Vlasák.

References
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[5] Ondřej Zindulka, Is every metric on the Cantor set σ-monotone?, Real
Analysis Exchange 33 (2008), no. 2, 485.

[6] , Mapping Borel sets onto balls by Lipschitz and quasi-Lipschitz
maps, to appear.


