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TRANSFERENCE OF DENSITY MAY BE
POSSIBLE

Sierpinski’s classical example of a set in the plane containing all but count-
ably many points on each vertical line, but only finitely many points on each
horizontal line shows that transference of density may not be possible. How-
ever, Sierpinski’s construction uses the continuum hypothesis. In an earlier
work Laczkovich and I showed that the possibility of such transference organi-
cally depends on the underlying set-theoretic axioms. In this work we consider
what can be said in the broader context of multiple directions.

We consider subsets of the upper half-plane, and investigate the possibility
of transferring one variety of linear density at points of the real line to an-
other variety of linear density. We give a complete solution to this problem in
that we try to find the optimal results whether the sets in question are mea-
surable or not. In the nonmeasurable case the best possible results prove to
be independent of ZFC, and depend on the nonexistence of certain sets with
paradoxical properties.
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