Daniel Waterman, Florida Atlantic University and Syracuse University. email: dan.waterman@gmail.com

VARIATIONS ON AXER'S THEOREM

1 Axer's Theorem

We will state Axer's theorem in the form given given by Hardy [2, p.378], which is a substantial generalization of the original result [1]. Although the theorem appears to be elementary, it may be used to deduce the prime number theorem from Wiener's Tauberian theorem and provides a tool to show the relationship between various important number-theoretic results. Many related results are to be found in an important paper of Ingham [3].

Theorem 1. If
(a) $f(x)$ is of bounded variation in every finite interval $[1, X]$,
(b) $A_{x}=\sum^{x} a_{n}=o(x)$,
and either of the pairs of conditions
(c1) $f(x)=O(1)$,
(d1) $\sum^{x}\left|a_{n}\right|=O(x)$,
(c2) $f(x)=O\left(x^{\alpha}\right), 0<\alpha<1$,
(d2) $a_{n}=O(1)$
is satisfied, then

$$
\sum^{x} a_{n} f\left(\frac{x}{n}\right)=o(x)
$$

Here \sum^{x} denotes summation over the integers from 1 to $[x]$, the greatest integer not exceeding x.

We consider the results that can be obtained by assuming that the function f is of generalized bounded variation, in particular, Λ-bounded variation and Φ-bounded variation. Although Hardy states that Landau has proven the converse result, the converse is actually false without an additional hypothesis on f. We give a counterexample and prove the amended converse theorem.

[^0]
2 Results

If we replace bounded variation by Λ-bounded variation we may generalize Axer's theorem in two different ways. We may strengthen the condition on A_{x} to obtain the original conclusion or use the original condition and obtain a weaker conclusion

Let $\Lambda=\left\{\lambda_{n}\right\}$. If in place of (b) we assume $A_{n}=o\left(n \lambda_{n}^{-1}\right)$, with the (c) and (d) conditions as before, then we obtain

$$
\sum^{x} a_{n} f\left(\frac{x}{n}\right)=o(x)
$$

If we take (b) as in Axer's theorem, we obtain

$$
\sum^{x} a_{n} f\left(\frac{x}{n}\right)=o\left(x \lambda_{[x]}\right)
$$

Now let us suppose that $\Phi(x)$ and $\Psi(x)$ are conjugate Young's functions, i.e., $\Phi(0)=0, \Phi$ is continuous and non-decreasing for $x>0$, and

$$
\Psi(y)=\max _{x \geqslant 0}\{x y-\Phi(x)\} .
$$

It is usual to assume stronger conditions on Φ, but that is not necessary here.
If we assume that $f(x)$ is of Φ-bounded variation in every finite interval $1 \leqslant x \leqslant X$, and

$$
\sum^{x} \Psi\left(\left|A_{n}\right|\right)=o(x)
$$

then with (c1) and (d1) as before, we have

$$
\sum^{x} a_{n} f\left(\frac{x}{n}\right)=o(x)
$$

Our converse result is the following.
Theorem 2. If $f(x)$ is a function of bounded variation in every finite interval $[1, X]$, such that

$$
\begin{aligned}
f(x) & =O(1) \\
|f(x)| & \geqslant c>0
\end{aligned}
$$

and

$$
\sum^{x} a_{n} f\left(\frac{x}{n}\right)=o(x), \text { where } \sum^{x}\left|a_{n}\right|=O(x)
$$

then

$$
\sum^{x} a_{n}=o(x)
$$

References

[1] A. Axer, Beitrag zur Kenntnis der zahlentheoretischen Funktionen $\mu(n)$ und $\lambda(n)$, Prace mat.-fiz., 21 (1910), 65-95.
[2] G. H. Hardy, Divergent series, Oxford at the Clarendon Press, 1948.
[3] A. E. Ingham, Some Tauberian theorems connected with the prime number theorem, J. London Math. Soc., 20 (1945), 171-180.

[^0]: Mathematical Reviews subject classification: Primary: 11M45; Secondary: 26A45

