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Abstract

If a force is applied to a particle undergoing Brownian motion, the
resulting motion has a state function which satisfies a diffusion or Schrö-
dinger-type equation. We consider a process in which Brownian motion
is replaced by a process which has Brownian transitions at all times
other than random times at which the transitions have an additional
“impulsive” displacement. Using a Feynman-Kac formulation based on
generalized Riemann integration, we examine the resulting equation of
motion.

1 Introduction.

This presentation is based on results contained in a joint work [1] with Marcia
Federson and Patrick Muldowney.

When some system parameter has a discontinuity, the term “impulse” or
“jump” can be a vivid way of describing this characteristic of the system.

Sometimes the state of a system can be described by a differential equation.
For instance, a diffusion can be described by a parabolic partial differential
equation satisfied by some function of displacement and time.

The purpose of this paper is to examine the relationship between discon-
tinuities in the state function which characterizes the diffusion, and impulsive
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changes in the underlying diffusion itself. We use a Feynman-Kac formulation
to show the connection between these two classes of discontinuities.

The scenario we tackle in this paper requires us to consider displacements
xt at various times t in some time interval ]τ ′, τ [, and also to consider the
possibility that, at arbitrary times τ ′ < t1 < · · · < tn−1 < τ , the displacements
xtj satisfy uj ≤ xtj ≤ vj for 1 ≤ j ≤ n − 1; or xj ∈ Cl(Ij) (closure of Ij),
where we write Ij = [uj , vj [ and xj = xtj for each j.

Writing x = (xt)t∈]τ ′,τ [ and I = {x : xj ∈ Ij , 1 ≤ j ≤ n− 1}, we are led
to consider Riemann sums such as

∑
f(x)µ(I). The corresponding integrals

are

∫
f(x)µ(I). The domain of integration is the set {x}, where each x is a

mapping of the form

x : ]τ ′, τ [ 7→ R, with xt = x(t) ∈ R for τ ′ < t < τ.

We denote this domain by R]τ ′,τ [, which can be viewed as a Cartesian prod-
uct of R by itself uncountably many times. The partitioning intervals I are
cylindrical subsets of R]τ ′,τ [.

The framework of generalized Riemann integration outlined above can be
adapted to this scenario, and this is explained in more detail in [2].

Treating the elements x as sample paths in some version of the Brownian
motion, we develop a Feynman-Kac representation

u(ξ, τ) =

∫
R]τ′,τ[

f(x)µ(I),

with ξ := x(τ), of the solutions u(ξ, τ) of a partial differential equation

∂u

∂τ
− 1

2

∂2u

∂ξ2
+ V (ξ)u = 0,

where V is a potential function.
With the aid of this theoretical framework, we can relate discontinuities in

u(ξ, τ) to “impulses” in the sample paths x.

2 Main Result.

Suppose 0 = τ0 < τ1 < τ2 < ... < τp < τ are given numbers and τ ∈ ]0, +∞[.
Define ∆ = R× [0, τ ],

Γk = {(ψ, t) : ψ ∈ R, t ∈ ]τk, τk+1[} , 0 ≤ k ≤ p− 1,

Γk = {(ψ, t) : ψ ∈ R, t ∈ [τk, τk+1[} , 0 ≤ k ≤ p− 1,
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Γp = {(ψ, t) : ψ ∈ R, t ∈ ]τp, τ [} , Γp = {(ψ, t) : ψ ∈ R, t ∈ [τp, τ [} ,

Γ =

p⋃
k=0

Γk and Γ =

p⋃
k=0

Γk.

Let K(∆, R) be the class of all functions u : ∆→ R such that

i) the functions u|Γk , k = 0, 1, ..., p, are continuous.

ii) for each k, k = 1, ..., p, the limit lim
(ν, t)→(ψ, τ−k )

u(ν, t) = u(ψ, τ−k ), ψ ∈ R,

exists.

iii) for each k, k = 1, ..., p, the limit lim
(ν, t)→(ψ, τ+

k )
u(ν, t) = u(ψ, τ+

k ), ψ ∈ R,

exists.

iv) for each k, k = 1, ..., p, we have u(ψ, τk) = u(ψ, τ+
k ), ψ ∈ R.

We consider the equation of Schrödinger type in Γ

∂

∂t
u(ψ, t)− 1

2

∂2

∂ψ2
u(ψ, t) + V (ψ)u(ψ, t) = 0, (1)

subject to the impulse condition

u(ψ, τk)− u(ψ, τ−k ) = I(ψ, τk, u(ψ, τk)), (2)

where k = 1, 2, ..., p, and V : R→ R and I : R3 → R are functions taking real
values and I is not identically zero.

Definition 2.1. The function u : ∆ → R is called a solution of the problem
(1)− (2) if:

i) u ∈ K(∆, R);

ii) the derivatives ut(ψ, t) and uψψ(ψ, t) exist, for (ψ, t) ∈ Γ;

iii) u satisfies (1) in Γ and (2) at each τk, k = 1, 2, ..., p.

Given 0 < τ ′ < τ , we assume {τp}p≥1∩ ]τ ′, τ [ 6= ∅, where τj = τ ′ +

j∑
i=1

ωi,

j = 1, 2, . . ., and {ωi : i = 1, 2, . . .} is a sequence of random variables with
ωi ∈ ]0, T [, 0 < T ≤ +∞, where ωi is independent of ωj when i 6= j for all
i, j = 1, 2, . . ..
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Let UI : R→ R be a continuous function. Given s ∈ ]τ ′, τ [ and ς ∈ R, let
N (s) be the set {t1, ...., tr−1}, where t0 = τ ′ and tr = s (r = r(s) ∈ N). Then

define gI(x, N (s)) =
∏

j∈N\J

exp
(
− 1

2
(xj−xj−1)2

tj−tj−1

)
√

2π(tj − tj−1)

∏
j∈J

exp
(
− 1

2
(Jj(xj)+xj−xj−1)2

tj−tj−1

)
√

2π(tj − tj−1)

and qI(x, N (s), I(s)) = gI(x, N (s))
∏r(s)−1
j=1 ∆Ij , where I(s) = I[N (s)]. Let

WI(x, N (s), I(s); ς, s) = qI(x, N (s), I(s))e−UI(xr(s)−1)(s−τ ′).

Theorem 2.1. Let τ ′ < s < τ and ς ∈ R. The function

φI(ς, s) =

∫
R]τ′, s[

WI(x, N (s), I(s); ς, s)

satisfies the partial differential equation of Schrödinger type in Γ

∂

∂s
u(ς, s)− 1

2

∂2

∂ς2
u(ς, s) + UI(ς)u(ς, s) = 0,

subject to the impulse condition

u(ξk, τk)− u(ξk, τ
−
k ) = I(ξk, τk, u(ξk, τk)),

where τj = τ ′ +

j∑
i=1

ωi, j = 1, 2, . . ., {ωi : i = 1, 2, . . .} is a sequence of

random variables with ωi ∈ ]0, T [, 0 < T ≤ +∞, ωi is independent of ωj
when i 6= j for all i, j = 1, 2, . . ., x(τk) = ξk ∈ R and I(ξk, τk, u(ξk, τk)) =
φI(ξk, τk)− φI(ξk, τ

−
k ), k = 1, 2, ..., p, p ≥ 1.
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