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Abstract

If a force is applied to a particle undergoing Brownian motion, the
resulting motion has a state function which satisfies a diffusion or Schro-
dinger-type equation. We consider a process in which Brownian motion
is replaced by a process which has Brownian transitions at all times
other than random times at which the transitions have an additional
“impulsive” displacement. Using a Feynman-Kac formulation based on
generalized Riemann integration, we examine the resulting equation of
motion.

1 Introduction.

This presentation is based on results contained in a joint work [1] with Marcia
Federson and Patrick Muldowney.

When some system parameter has a discontinuity, the term “impulse” or
“jump” can be a vivid way of describing this characteristic of the system.

Sometimes the state of a system can be described by a differential equation.
For instance, a diffusion can be described by a parabolic partial differential
equation satisfied by some function of displacement and time.

The purpose of this paper is to examine the relationship between discon-
tinuities in the state function which characterizes the diffusion, and impulsive

Mathematical Reviews subject classification: Primary: 28C20, 35R12; Secondary: 46G12,

46T12
Key words: Henstock integral, Feynman-Kac formula, partial differential equations,

impulse, Brownian motion
*Supported by CNPq (140326,/2005-7) and CAPES (BEX 4681/06-1).

o1



52 E. M. BoNnoTTO, M. FEDERSON AND P. MULDOWNEY

changes in the underlying diffusion itself. We use a Feynman-Kac formulation
to show the connection between these two classes of discontinuities.

The scenario we tackle in this paper requires us to consider displacements
x¢ at various times ¢ in some time interval |7/, 7], and also to consider the
possibility that, at arbitrary times 7/ < t; < -+ < t,,_1 < T, the displacements
xy, satisfy u; < @, <wjfor 1 < j <n—1;o0rz; € Cl(f) (closure of ),
where we write I; = [u;,v;[ and x; = 2, for each j.

Writing = (2¢)¢e]r - and [ ={z:2; € [;, 1 <j<n—1}, we are led
to consider Riemann sums such as > f(x)u(I). The corresponding integrals

are /f(x)u(l). The domain of integration is the set {z}, where each = is a

mapping of the form
x: )7, 7[R, with z; =z(t) e R for 7/ <t <.

We denote this domain by ]R]T,’T[, which can be viewed as a Cartesian prod-
uct of R by itself uncountably many times. The partitioning intervals I are
cylindrical subsets of RI™" L.

The framework of generalized Riemann integration outlined above can be
adapted to this scenario, and this is explained in more detail in [2].

Treating the elements x as sample paths in some version of the Brownian
motion, we develop a Feynman-Kac representation

ER|

u(é,r) = / @,

with £ := z(7), of the solutions u({, 7) of a partial differential equation

ou 10%u

ar 29e TVEu=0,

where V is a potential function.
With the aid of this theoretical framework, we can relate discontinuities in
u(€,7) to “impulses” in the sample paths z.

2 Main Result.

Suppose 0 =79 < 71 < T2 < ... < T, < T are given numbers and 7 € ]0, +o0].
Define A =R x [0, 7],

Fk:{(wat):dJGRatG]Tk,Tk—i—l[}a OSkSP*L

fk:{(¢;t)37//€R7t€[7'k77'k+1[}, OSkSP—L
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L,={(,t): veR, te]lr, 7]}, T,={,t): v eR, ten, [},
P o
r= Urk and T = Urk.
k=0 k=0
Let K(A, R) be the class of all functions u : A — R such that
i) the functions u|r,, k = 0,1, ..., p, are continuous.
ii) for each k, k =1, ..., p, the limit lim u(y, t) =u(y, 7, ), ¥ €R,

(v, )=, 7))
exists.

iii) for each k, k =1, ..., p, the limit lim u(v, t) = u(v, T’j), P € R,
(v, )= (%, )
exists.

iv) for each k, k = 1,...,p, we have u(, 71,) = u(¥, 7;7), ¥ € R.
We consider the equation of Schrédinger type in T’

0 1 02
au(d}a t) - iaiquu(qh t) + V(l/’)u(iﬁ’ t) = 07 (1)

subject to the impulse condition

u(’ll), Tk) - U(Q)Z}, Tk;_) = I[(d)7 Tk U(l/f, Tk))7 (2)

where k =1,2,...,p,and V: R — R and I : R?> = R are functions taking real
values and I is not identically zero.

Definition 2.1. The function u : A — R is called a solution of the problem
(1) = (2) o
i) u € K(A, R);
ii) the derivatives uy (1, t) and wyy (Y, t) exist, for (¢, t) € T;
iii) u satisfies (1) in T and (2) at each 1, k =1,2,...,p.
J
Given 0 < 7/ < 7, we assume {7, },>1N]7", 7[# 0, where 7; = 7" + Zwi,
i=1

=1,2,..., and {w; : i = 1,2,...} is a sequence of random variables with
10, T[, 0 < T < +o00, where w; is independent of w; when i # j for all
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Let Uz : R — R be a continuous function. Given s €]7/, 7[ and ¢ € R, let
N be the set {t1,....,t,_1}, where ty = 7/ and t, = s (r = r(s) € N). Then
zj—xj_1)> Ji(x;)+z;—x;
exp (_%% exp (ﬁ%)

define gz(r, N©) = ] 27rt’itj;1 )H

JEN\T JjET
and gz(z, N® 1)) = gz(x, NG ))HT(S A, where 1) = I[N®)]. Let
WI(.T, N(S)7 I(S)’ g’ 3) — qI(aj7 ]\7(5)7 I(S)) 7UZ(£7(5) 1)(5 T).

Theorem 2.1. Let 7/ < s < 7 and ¢ € R. The function

oz(s, ) = /R] / [WI<x’ N(S)7 I(S);§7 S)

satisfies the partial differential equation of Schrddinger type in T

0 1 02
%u(g’ s) — 58—C2u(§, s) + Uz(s)u(s, s) =0,

subject to the impulse condition

w(&r, ) — u(, 75 ) = L&ky Thy w(€ky ),

27‘(’ t‘—tj 1)

where T; = T’+Zwi,j =1,2,..,{w; : 1 = 1,2,...} is a sequence of

random variables with w; €10, T[, 0 < T < 400, w; is independent of w;
when i # j for all i, = 1,2,..., x(1;) = & € R and 1(&, T, w(&k, 7)) =
¢k, %) — ¢k 7, ), B =1,2,...,p, p >

—
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