Eddy A. Kwessi, Department of Mathematics and Statistics, Auburn University, AL 3649, U.S.A. email: kae0005@auburn.edu

CHARACTERIZATION OF LACUNARY FUNCTIONS IN WEIGHTED BERGMAN BESOV LIPSCHITZ SPACES

The space B^{ρ} has been studied at length by various authors for various purposes. This space first appears in its simplest form in [1] where it was denoted by B^1 . This was later generalized to a weighted version B^{ρ} in [2] and [3]. It was shown in these papers that B^{ρ} is the boundary value of those functions F for which $\int_0^1 \int_0^{2\pi} |F'(re^{i\theta})| (1-r)^{\frac{1}{q}-1} d\theta dr < \infty$ for the weight function $\rho(t) = t^{1/q}$. It was shown in [4] that B^{ρ} , for a general weight function ρ , is a real characterization of analytic functions in the unit disc for which $\int_{0}^{1} \int_{0}^{2\pi} |F'(re^{i\theta})| \frac{\rho(1-r)}{1-r} d\theta dr < \infty, \text{ generalizing the results obtained in [2]}$ and $[\tilde{3}]$.

We consider the weighted Bergman-Besov-Lipschitz space B^{ρ} of analytic functions F in the unit disc $\mathbb{D} = \{z \in \mathbb{C}, |z| \leq 1\}$ for which

$$||F||_{B^{\rho}} = \int_0^1 \int_0^{2\pi} |F'(re^{i\theta})| \frac{\rho(1-r)}{1-r} d\theta dr$$

and we show that a lacunary function $F(z) = \sum_{n=1}^{\infty} a_n z^n$ belongs to B^{ρ} if and

only if the sequence a_n satisfies $\sum_{n=1}^{\infty} 2^n K(n,\rho) \left(\sum_{k \in I_n} |a_k|^2\right)^{1/2} < \infty$, where I_n are diadic intervals defined by $I_n = \{k \in \mathbb{N} : 2^{n-1} \le k < 2^n\}$, ρ belongs to a

certain class of weights, and $K(n, \rho) > 0$ is a function of n and ρ .

59

Mathematical Reviews subject classification: Primary: 42A55; Secondary: 42A45 Key words: analytic functions, weighted spaces, Banach space, lacunary

Definition 1. Lacunary functions are analytical functions $F(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ for which $\lambda = \inf \frac{n_{k+1}}{2} > 1$

for which $\lambda = \inf_k \frac{n_{k+1}}{n_k} > 1.$

In other words, these are analytic functions that have a natural boundary and thus cannot be continued outside their disk of convergence.

Definition 2. We define

$$B^{\rho} = \left\{ F : \mathbb{D} \to \mathbb{D}, F \text{ analytic and } \int_{0}^{1} \int_{0}^{2\pi} |F'(re^{i\theta})| \frac{\rho(1-r)}{1-r} d\theta dr < \infty \right\}$$

and

$$b^{\rho} = \left\{ F: \mathbb{D} \to \mathbb{D}, F(z) = \sum_{n=0}^{\infty} a_n z^n, \quad \sum_{n=0}^{\infty} 2^n K(n,\rho) \left(\sum_{k \in I_n} |a_k|^2 \right)^{1/2} < \infty \right\} ,$$

where $I_n = \{k \in \mathbb{N} : 2^{n-1} \le k < 2^n\}.$

Note that B^{ρ} and b^{ρ} are endowed respectively with the norms

$$\|F\|_{B^{\rho}} = \int_0^1 \int_0^{2\pi} |F'(re^{i\theta})| \frac{\rho(1-r)}{1-r} d\theta dr$$

and

$$||F||_{b^{\rho}} = \sum_{n=0}^{\infty} 2^{n} K(n,\rho) \left(\sum_{k \in I_{n}} |a_{k}|^{2}\right)^{1/2}.$$

Definition 3. We say the weight function $\rho : [0,1] \to [0,\infty)$ belongs to the class S if $\rho(0) = 0$, ρ is nondecreasing, and there are positive constants $C_1, C_2, K(n, \rho)$ satisfying

$$\int_{0}^{1} r^{2^{n-1}-1} \frac{\rho(1-r)}{1-r} dr \le C_1 K(n,\rho), \quad \forall n \ge 1$$
(1)

and

$$\int_{1-2^{-(n-1)}}^{1-2^{-n}} r^{2^n-1} \frac{\rho(1-r)}{1-r} dr \ge C_2 K(n,\rho), \quad \forall n \ge 2.$$
(2)

Hereafter c and C denote generic positive constants and when there is no ambiguity, we shall name all constants by c and C.

Theorem 1. The class S is not empty.

1 Main Theorem

Theorem 2. Suppose $\rho \in S$. Then

- 1. b^{ρ} is a Banach space.
- 2. For any function $F(z) = \sum_{n=1}^{\infty} a_n z^n$ belonging to B^{ρ} , there is a constant C > 0 such that

$$||F||_{B^{\rho}} \le C ||F||_{b^{\rho}}$$

3. If $F(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$ is lacunary and belongs to B^{ρ} , then there is a constant c > 0 such that

$$||F||_{B^{\rho}} \ge c ||F||_{b^{\rho}}$$

Remark 3. Note that to obtain the upper bound in the main theorem, lacunary sequences are not necessary. The inequality from [5] that allowed us to obtain the lower bounds requires the sequence to be lacunary.

Remark 4. In the second part of the proof of the main theorem, our approach of writing the interval [0,1] as the union of non-overlapping intervals $[1 - 2^{n-1}, 1 - 2^{-n})$, $n \ge 1$, is similar to that in [6].

To prove the first theorem, we used results about inequalities for the Gamma function in [7].

References

- G. De Souza, Spaces formed by special atoms, PhD Dissertation, SUNY at Albany, 1980.
- [2] G. De Souza, The atomic decomposition of Besov-Bergman-Lipschitz Spaces, Proc. Amer. Math. Soc. 94 (1985), 682–686.
- [3] G. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc(2), 27 (1983), 267–276.
- [4] S. Bloom and G. De Souza, Atomic decomposition of generalized Lipschitz spaces, *Ill. J. Math.*, **33** (1989), 181–209.
- [5] A. Zygmund, Trigonometric Series, 3rd Edition, Vol I and II, Cambridge Mathematical Library, 2002.
- [6] O. Blasco, Multipliers on spaces of analytical functions, Canad. J. Math. 47 (2001), 44–64.

- [7] H. Alzer, Sharp inequalities for the beta function, *Indag. Mathem.*, 12 (2001), 15–21.
- [8] R. Zhao, On a General family of Function Spaces, Ann. Acad. Sci. Fenn. Math. Diss., 105 (1996), 1–56.