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Abstract

In this summary we introduce a successful analogue of the classical
Egoroff theorem for non-additive measures with values in a Riesz space
having the asymptotic Egoroff property.

1 Introduction.

In 1974, Sugeno [8] introduced the notion of fuzzy measure and integral to
evaluate non-additive or non-linear quality in systems engineering. In the
same year, Dobrakov [2] independently introduced the notion of submeasure
from mathematical point of view to refine measure theory further. Fuzzy
measures and submeasures are both special kinds of non-additive measures,
and their studies have stimulated engineers’ and mathematicians’ interest in
non-additive measure theory [1, 7, 9].

When developing non-additive measure theory in a Riesz space, along with
the non-additivity of measures, there is a tough technical hurdle to overcome,
that is, the ε-argument, which is useful in calculus, does not work in a general
Riesz space. Recently, it has been recognized that, as a substitute for the
ε-argument, certain smoothness conditions, such as the weak σ-distributivity,
the Egoroff property, the asymptotic Egoroff property, and the multiple Ego-
roff property, should be imposed on a Riesz space to succeed in extending
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fundamental and important theorems in non-additive measure theory to Riesz
space-valued measures. Thus, the study of Riesz space-valued measures will
go with such smoothness conditions on the involved Riesz space, and our re-
cent developments reach to non-additive extensions of important theorems in
measure theory, such as the Egoroff theorem, the Lebesgue theorem, the Riesz
theorem, the Lusin theorem, the Alexandroff theorem, and some convergence
theorems of integrals.

In this summary, due to limitations of space, we only introduce a successful
analogue of the classical Egoroff theorem for non-additive measures with values
in a Riesz space having the asymptotic Egoroff property. See [4] and the
bibliography therein for our other contributions to Riesz space-valued non-
additive measure theory.

2 The Egoroff theorem.

In what follows, we always assume that V is a Riesz space and (X,F) is a
measurable space. Denote by N the set of all natural numbers. A set function
µ : F → V is called a non-additive measure if µ(∅) = 0 and µ(A) ≤ µ(B)
whenever A,B ∈ F and A ⊂ B.

The classical theorem of Egoroff is one of the most fundamental and impor-
tant theorems in measure theory. This asserts that almost everywhere conver-
gence implies almost uniform convergence (and hence convergence in measure)
and gives a key to handle a sequence of measurable functions. However, it is
known that the Egoroff theorem does not hold in general for non-additive
measures.

Recently, Murofushi et al. [6] discovered a necessary and sufficient condi-
tion, called the Egoroff condition, which assures that the Egoroff theorem is
still valid for real valued non-additive measures, and indicated that the con-
tinuity of a non-additive measure is one of the sufficient conditions for the
Egoroff condition; see also Li [5]. The Egoroff condition can be naturally de-
scribed for Riesz space-valued non-additive measures. Denote by Θ the set of
all mappings from N into N.

Definition 1 ([3]). Let µ : F → V be a non-additive measure.
1. A double sequence {Am,n}(m,n)∈N2 ⊂ F is called a µ-regulator in F if it
satisfies the following two conditions:

(i) Am,n ⊃ Am,n′ whenever m,n, n′ ∈ N and n ≤ n′.
(ii) µ (

⋃∞
m=1

⋂∞
n=1Am,n) = 0.

2. We say that µ satisfies the Egoroff condition if infθ∈Θ µ
(⋃∞

m=1Am,θ(m)

)
= 0

for any µ-regulator {Am,n}(m,n)∈N2 in F .
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Let {fn}n∈N be a sequence of F-measurable, real-valued functions on X
and f also such a function. Recall that {fn}n∈N converges µ-almost everywhere
to f if there is a set E ∈ F with µ(E) = 0 such that fn(x) converges to f(x) for
all x ∈ X −E, and converges µ-almost uniformly to f if there is a decreasing
net {Eα}α∈Γ ⊂ F with µ(Eα) ↓ 0 such that fn converges to f uniformly on
each set X−Eα. The following gives a Riesz space version of [6, Proposition 1].

Theorem 1 ([3]). Let µ : F → V be a non-additive measure. Then, µ
satisfies the Egoroff condition if and only if the Egoroff theorem holds for µ,
that is, for any sequence {fn}n∈N of F-measurable, real-valued functions on
X converging µ-almost everywhere to such a function f on X, it converges
µ-almost uniformly to the same limit f .

Li [5, Theorem 1] proved that the Egoroff theorem holds for any contin-
uous real-valued non-additive measure. Its proof is essentially based on the
ε-argument which does not work in a general Riesz space. Therefore, it seems
that, as a substitute for the ε-argument, some smoothness conditions should
be introduced and imposed on a Riesz space to obtain a successful analogue
of the Egoroff theorem for Riesz space-valued non-additive measures. The fol-
lowing is one of our new smoothness conditions on a Riesz space by which we
will develop Riesz space-valued non-additive measure theory.

Definition 2 ([3]). Let u ∈ V +. For each m ∈ N, consider a multiple sequence
u(m) := {un1,...,nm

}(n1,...,nm)∈Nm of elements of V .

1. A sequence {u(m)}m∈N of the multiple sequences is called a u-multiple reg-
ulator in V if, for each m ∈ N and (n1, . . . , nm) ∈ Nm, the multiple sequence
u(m) satisfies the following two conditions:

(i) 0 ≤ un1
≤ un1,n2

≤ · · · ≤ un1,...,nm
≤ u.

(ii) Letting n→∞, then un ↓ 0, un1,n ↓ un1
, . . . , and un1,...,nm,n ↓ un1,...,nm

.

2. We say that V has the asymptotic Egoroff property if, for each u ∈ V + and
each u-multiple regulator {u(m)}m∈N, the following two conditions hold:

(i) uθ := supm∈N uθ(1),...,θ(m) exists for each θ ∈ Θ.

(ii) infθ∈Θ uθ = 0.

We are now ready to give a Riesz space version of [5, Theorem 1].

Theorem 2 ([3]). Let µ : F → V be a non-additive measure. Assume that
V has the asymptotic Egoroff property. Then, µ satisfies the Egoroff condi-
tion whenever it is continuous, that is, µ(An) → µ(A) whenever a sequence
{An}n∈N ⊂ F monotonically converges to A ∈ F .
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3 Conclusion.

We give a very short summary of our recent developments in Riesz space-valued
non-additive measure theory. Such a study goes with smoothness conditions
on the involved Riesz space, because the ε-argument, which is useful in the
existing theory of measures, does not work well in a general Riesz space.
Typical examples of Riesz spaces satisfying our smoothness conditions are the
Lebesgue function spaces Lp[0, 1] (0 < p ≤ ∞), so that the established results
could be instrumental when developing non-additive extension of the theory
of p-th order stochastic processes and fuzzy number-valued measure theory.
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