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Abstract

Heuristically, the stunning feature of the real line i.e. the set of reals
R with the usual topology U is uniformizable whereas its countable
complement extension topology is not, stems the problem – whether,
more generally, a topological space, uniformizable or not, has a non-
trivial proper uniformizable subtopology (other than the subtopology
{∅, X, U, V }, which is always uniformizable, for a disconnection {U, V }
of X, in the case when X is disconnected). In this paper, sufficient
conditions are given for spaces to have non-trivial proper uniformizable
subtopologies, where a topology σ onX is called a subtopology of a space
(X, τ) if σ ⊂ τ . An useful consequence of this investigation reflects that
a sort of converse of the famous A. H. Stone’s theorem is true. In this
study, disconnectedness plays a major role, specially when it is of very
strong in nature like zero dimensionality; then, for a paracompact T2

space containing no isolated points, the cardinality of such subtopologies
is at least ℵ0. It has also been established as to when a space does not
possesses any such subtopology.
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1 Preliminaries.

By X, we shall mean a topological space without any separation axioms. For
a cover U of X and for a subset A of X, the star of A with respect to U is
the set St(A;U) = ∪{U ∈ U : U ∩ A 6= ∅}; and for two covers U and V of X,

we call U star refines V or U is a star refinement of V, written U
?
< V, if for

each U ∈ U , ∃ V ∈ V such that St(U ;U) ⊂ V . U is called a refinement of V
written as U < V if for each U ∈ U , there exists V ∈ V such that U ⊂ V .

A normal sequence of covers is a sequence of open covers U1,U2, ..... of X

such that Un+1

?
< Un for n = 1, 2, ...; and a normal cover is cover which is U1

in some normal sequence of covers.
A collection µ′ of covers of a space X is a base for some uniformity on X

iff it satisfies the condition that for U1,U2 ∈ µ′ there is some U3 ∈ µ′ such

that U3
?
< U1 and U3

?
< U2 [§ 36.3, Page-245 [4]]. It is well known that if

µ′ is a base for a covering uniformity µ on X, then {St(x;U) : U ∈ µ′} is a
nbd. base at x ∈ X in the uniform topology [§36.6, Page 246 [4]]. Also if X
is any uniformizable topological space then there is a finest uniformity on X,
compatible with the topology of X, called the fine uniformity on X, denoted by
µF , having a base of all normally open covers of X ; such a space is known as
fine space. Further, a T1 space is paracompact iff every open cover has an open
star refinement [§20.14, Page-149 [4]], where a space X is called paracompact
iff every open cover of X has an open locally finite refinement, which is also a
cover of X.

2 Uniformizable Subtopology.

Since one can check that µ0 , the collection of all normally open covers of
(X, τ), is a normal family, then by Theorem 36.11, Page-248, [4], µ0 is a
subbase for some uniformity µ on X. Let µ′ be the base for µ obtained from
the subbase µ0 and τ ′ be the corresponding uniform topology . Now, β′x =
{St(x;U) : U ∈ µ′} is a nbd. base at x ∈ X in (X, τ ′). Then β′x ⊂ βx, for
all x ∈ X where βx is a nbd. base at x in (X, τ). If τ is not uniformizable
then as τ ′ is being uniformizable , τ ′ $ τ . That τ ′ is non trivial if (X, τ) is
disconnected; in fact, for a disconnection (U, V ) of (X, τ), U = {U, V } is an
open cover of (X, τ) and also is a partition of X. Therefore, U star refines itself
and hence is a normally open cover and so U ∈ µ0. Consequently U ∈ µ′. Here
St(x;U) is either U if x ∈ U or V if x ∈ V .

Clearly, U ∈ β′x, ∀x ∈ U . So U contains a basic nbd. of each of its points
in (X, τ ′) and hence U ∈ τ ′. Since U 6= X, ∅, τ ′ is therefore nontrivial. Hence
we have the following result:
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Theorem 1. If (X, τ) is a disconnected non uniformizable topological space
containing at least three points then there exists a non trivial proper uniformiz-
able subtopology on X.

Remark 1. The assumptions of disconnectedness and card(X) ≥ 3 are es-
sential.

Example 1. Let X = {a, b, c, d} and τ = {∅, X, {a, b}, {d}, {a, b, d}}. Then
(X, τ) is a non-discrete, non-uniformizable, connected space having no non
trivial strictly smaller uniformizable subtopology. In fact, all four non trivial
proper subtopologies are non uniformizable.

Example 2. Let X = {a, b}. Then the collection of all topologies on X is
{τ1 = {∅, X, {a}}, τ2 = {∅, X, {b}}, τ3 =discrete, τ4=indiscrete}. Here τ1, τ2
are connected , non-uniformizable, non discrete, nontrivial topologies on X,
both of which have only one strictly smaller topology which is indiscrete.
That the assumption of disconnectedness is not necessary, follows from the
next example:

Example 3. Let τ be the countable complement extension topology of the
real line with the usual topology (R,U). Then obviously (R, τ) is a non-
uniformizable, connected space and has the subtopology which is the usual
topology U , that is non trivial, proper as well as uniformizable.

It is not hard to prove the following theorem :

Theorem 2. Let (X, τ) be a non-uniformizable non-compact space (without
T1-axiom) in which every open cover has an open star refinement, Then (X, τ)
has a proper nontrivial uniformizable subtopology.

On the other hand, suppose (X, τ) is paracompact T2 but non metriz-
able,then every open cover is a normally open cover and also as (X, τ) is being
T2, for all x 6= y ∈ X, there exist disjoint open sets Ox and Oy containing
x and y respectively. Clearly Ox and Oy are proper open subsets of X, for
all x 6= y ∈ X. Fix y0, x0 ∈ X and take U = {Ox, x(6= x0) ∈ X such that
Ox0 ∩ Ox = ∅, x0 ∈ Ox0 , x ∈ Ox, Ox0 , Ox ∈ τ} ∪ {Ox0 ∈ τ : Ox0 ∩ Oy0 =
∅, x0 ∈ Ox0

, y0 ∈ Oy0 , Oy0 ∈ τ}; then U is an τ -open cover of X. So, U is a
normally cover. Let U = U1,U2,.... be the corresponding normal sequence of
open covers. Then µ′ = {U1,U2, ...} is a base for some uniformity µ on X.
Let τµ be the corresponding uniform topology induced by the uniformity µ
on X. Then τµ is pseudometrizable as µ has a countable base µ′. The family
βx = {St(x;Ui) : i = 1, 2, 3, ....} is a nbd. base at x ∈ X in (X, τµ). Here
it is to be noted that all members of all Ui,s are proper open subsets of X .
Now for St(x;Ui) ∈ βx, x ∈ X, St(x;Ui) ⊆ St(U ;Ui) for some U ∈ Ui such
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that x ∈ U . Also St(U ;Ui) ⊂ V for some V ∈ Ui−1 and as V $ X, then
St(x;Ui) ⊂ V $ X. So, βx contains many proper subsets of X. Therefore τµ
contains proper nonempty open sets, and hence τµ is a non-trivial topology
on X.
Now if µ′1 be the collection of all open covers of X then µ′1 is the base for the
fine uniformity µF on X [as (X, τ) is paracompact T2, so every open cover
of (X, τ) is normally open cover, and as the family of all normally open cov-
ers of a uniformizable space (X, τ), forms base for the fine uniformity µF on
X, which induces the topology τ ] which gives the topology τ as the uniform
topology. Now µ′ ⊂ µ′1 ⇒ τµ ⊆ τ = τµF

. As τ is not pseudometrizable and τµ
is pseudometrizable, so τµ $ τ . Hence X has a proper non-trivial subtopology
τµ, which is uniformizable [as generated by the uniformity µ]. Hence we have
the following theorem :

Theorem 3. A non-metrizable, paracompact T2 space X has a proper, non-
trivial uniformizable subtopology.

The famous A.H. Stone’s theorem states that every metrizable space is
paracompact T2. Whereas βN , the Stone Čech compactification of the set of
naturals N (with the discrete topology) is paracompact T2 but is not metriz-
able. But we derive the following converse i.e. Corollary 1:
Indeed, in the discussion before Theorem 3, we had the subtopology τµ, which
was come from a uniformity µ with a countable base µ′. So, τµ is pseu-
dometrizable such that τind. $ τµ ⊆ τ . If τµ = τ then as (X, τ) is T2, (X, τ)
is metrizable. If τµ $ τ then τµ is a proper non trivial pseudometrizable
subtopology of τ . Hence we have the corollary:

Corollary 1. If (X, τ) is paracompact T2 then either (X, τ) is metrizable or
(X, τ) has a proper nontrivial subtopology which is pseudometrizable.

Remark 2. In Theorem 3, ‘paracompact-ness’ is not necessary.

Example 4. Let Y = βN , where βN is the Stone-Čech compactification of the
set of natural numbers N and consider the topology τ on Y generated by the
topology τ ′ of βN together with the sets N ∪{y}, for all y ∈ βN −N . Clearly
(Y, τ) is non-compact T2-space. Also (Y, τ) is non-completely regular. In fact it
is non-regular. Consider the closed set βN−(N∪{y}) and y /∈ βN−(N∪{y}).
Since any open set containing y in (Y, τ) is either N ∪ {y} or meeting N and
as N (in (Y, τ ′)) = βN , then every open set in Y containing βN − (N ∪ {y})
meets N . Hence (Y, τ) is also non-paracompact, non-metrizable as well as
non uniformizable. But the non-trivial topology τ ′ on βN is strictly weaker
than the topology τ on Y = βN and (βN, τ ′) is compact T2 and hence is
uniformizable.
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In case (X, τ) is disconnected T2 containing no isolated points, then it has
a disconnection(U, V ) of X; obviously both U and V contains infinite num-
ber of points. Let x0, y0, x1, y1, ....., xn, yn ∈ V and all are distinct. Now
as (X, τ) is T2, we get two disjoint open sets Oxi

(y) and Oy(xi) contain-
ing y and xi respectively, two disjoint open sets Oyi(y) and Oy(yi) contain-
ing y and yi respectively and another two disjoint open sets O′yi(xi) and
O′xi

(yi) containing xi and yi respectively for each i ∈ {0, 1, ...., n} and for
each y(6= xi, yi : i = 0, 1, 2, ...., n) ∈ V . Instead of O′y0(x0), O′x0

(y0), .....,
O′yn(xn), O′xn

(yn) we take open sets Oy0(x0), Ox0
(y0), ....., Oyn(xn), Oxn

(yn)
which are pairwise disjoint. Such sets are constructed in the following way:
By T2 property for the two points x, y (x 6= y) ∈ X, we have two disjoint
open sets Ux(y) and Uy(x) containing y and x respectively. Now consider the
following chart.

For x0 For x1 For xn−1 For y0 For y1 For yn−1
and xi, and xi, and xn, and yi, and yn, and yn
i = 1, i = 2, .. and xn−1, i = 1, 2, i = 2, ..
2, .., n 3, .., n yi .., n 3, .., n
and for and for i = 0, 1,
xo, yi, x1 and yi, 2, .., n
i = 0, 1, i = 0, 1,
2, .., n 2, .., n
Ux1

(x0),
Ux0

(x1);
Ux2

(x0), Ux2
(x1),

Ux0(x2); Ux1(x2);
Ux3(x0), Ux3(x1),
Ux0

(x3); Ux1
(x3);

...
...

...
...

...
Uxn

(x0), Uxn
(x1), Uxn

(xn−1),
Ux0

(xn); Ux1
(xn); .. Uxn−1

(xn);
Uy0(x0), Uy0(x1), Uy0(xn−1),
Ux0

(y0); Ux1
(y0); .. Uxn−1

(y0);
Uy1(x0), Uy1(x1), Uy1(xn−1), Uy1(y0),
Ux0(y1); Ux1(y1); .. Uxn−1(y1); Uy0(y1);
Uy2(x0), Uy2(x1), Uy2(xn−1), Uy2(y0), Uy2(y1),
Ux0

(y2); Ux1
(y2); .. Uxn−1

(y2); Uy0(y2); Uy1(y2);
...

...
...

...
...

...
...

...
...

...
...

...
Uyn(x0), Uyn(x1), Uyn(xn−1), Uyn(y0), Uyn(y1), Uyn(yn−1),
Ux0

(yn); Ux1
(yn); .. Uxn−1

(yn); Uy0(yn); Uy1(yn); .. Uyn−1
(yn);
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Now considering the intersection of O′yi(xi) and all open sets containing
xi in the above chart, we shall get Oyi(xi), i = 0, 1, 2, . . . , n. Similarly, the
intersection of O′xi

(yi) and all open sets containing yi in the above chart we
shall get Oxi

(yi), i = 0, 1, 2, . . . , n. Clearly Ox0
(y0), Oy0(x0), . . . , Oxn

(yn),
Oyn(xn) are pairwise disjoint open sets. Let UV = {Ox0

(y) ∩ Oy0(y) ∩ . . . ∩
Oxn(y) ∩ Oyn(y) ∩ V : y 6= xi, yi, i = 0, 1, 2, . . . , n} ∪ {Oy0(x0) ∩ V,Ox0(y0) ∩
V, . . . , Oyn(xn)∩V,Oxn(yn)∩V }. Here sets Oy(x0)∩V,Oy(y0)∩V, . . . , Oy(xn)∩
V,Oy(yn) ∩ V for y(6= xi, yi, i = 0, 1, 2, . . . , n) ∈ V are not taken. Let U =
{U} ∪ UV . Here U is a cover of X containing proper open subsets of (X, τ)
and every member of UV is contained in V.

If in addition (X, τ) is paracompact then U is normally open cover and so
there exists a normal sequence of open covers U1,U2, . . . with U = U1. Here

Uk
?
< U1 = U , ∀k > 1 and any W ∈ Uk is either a subset of U or contained in

some member of UV , as U is disjoint with each member of UV .

We shall consider a new sequence of open covers U1
′
,U2

′
,U3

′
, . . . , where

U = U1
′

= U1, and for k > 1, Uk
′

is Uk , when Uk contains only U and
no other subsets of U, and if Uk contains at least one proper open subset of
(X, τ) which is contained in U then we remove all these proper subsets of U

and replace them by U if U is not in Uk and get Uk
′
. So it is easy to see that

. . .
?
< U3

′ ?
< U2

′ ?
< U1

′
= U .

So, U is a normally open cover of (X, τ) . Now we see that µ = {U1
′
,U2

′
, . . .}

is clearly a base for some uniformity µ
′

on X. Let τµ′ be the topology induced

by µ
′

on X. Let µ1 be the collection of all normally open covers of (X, τ). Then
µ1 is the base for the fine uniformity µ1

′
on X, which induces the topology

τ and µ ⊆ µ1. So, τµ′ ⊆ τµ1
′ , where τµ1

′ is the uniform topology induced

by the fine uniformity µ1
′

on X. As τµ1
′ = τ , so τµ′ ⊆ τ . Since the family

βx = {St(x;Uk
′
) : k = 1, 2, . . .} forms a nbd. base at x ∈ X for (X, τµ′ ) and

St(x;Uk
′
) = U for all x ∈ U and any k, so U is open in (X, τµ′ ) . Therefore,

τind $ τµ′ .

Next shall show that τµ′ $ τ . In fact,for x0
′
, y0

′ ∈ U , as ∀ x ∈ U ∩
Oy0′ (x0

′
), U ∩ Oy0′ (x0

′
) $ U = St(x;Uk

′
), ∀k and ∀y ∈ U ∩ Ox0

′ (y0
′
), U ∩

Ox0
′ (y0

′
) $ U = St(y;Uk

′
), ∀k, then for any x ∈ U ∩Oy0′ (x0

′
), U ∩Oy0′ (x0

′
),

does not contain any member of the nbd. base βx at x in (X, τµ′ ). So,

U ∩ Oy0′ (x0
′
) 6∈ τµ′ . Similarly U ∩ Ox0

′ (y0
′
) 6∈ τµ′ . But they are open in

(X, τ).

It can also be shown that τind $ τT $ τ where τT = {∅, X, U, V }, τT is
obviously also uniformizable. Hence we have the following theorem:
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Theorem 4. If (X, τ) is a paracompact T2 disconnected space containing no
isolated points then (X, τ) has a non-trivial, proper uniformizable subtopology
(different from τT = {∅, X, U, V } which comes from any disconnection {U, V }
of X).

Let UV ,Oxi
(yi) and Oyi(xi) be as before. If the disconnectedness of the

above Theorem is seen zero-dimensionality, there exist clopen sets U
′
xi

(yi),
U
′
yi(xi) such that yi ∈ U

′
xi(yi) ⊂ Oxi(yi) and xi ∈ U

′
yi(xi) ⊂ Oyi(xi).

Consider the open cover V = {Hxi(yi), Hyi(xi) : i = 0, 1, 2, . . . , n} ∪ {U} ∪
{V ∩ (Hx0(y0) ∪ Hy0(x0) ∪ . . . ∪ Hyn(xn) ∪ Hxn(yn))c}, where U

′
xi(yi) ∩

V = Hxi(yi) and U
′
yi(xi) ∩ V = Hyi(xi). Here elements of {Hxi(yi) : i =

0, 1, 2, . . . , n,Hyi(xi) : i = 0, 1, 2, . . . , n} are pairwise disjoint and choose an
arbitrary element of say Hxk

(yk), and keep it fixed. For two distinct points
a, b of Hxk

(yk), applying T2-property for z and a (z 6= a, b), z ∈ Hxk
(yk)

we get two disjoint open sets Oz(a) and Oa(z) containing a and z respec-
tively. We also get two disjoint open sets Oa(b) and Ob(a) containing b and
a respectively. Now consider the open cover VHxk

(yk) of X as VHxk
(yk) =

{Hxk
(yk)∩Ob(a)} ∪ {Hxk

(yk)∩Oa(z) : z( 6= a) ∈ Hxk
(yk)} ∪ {U} ∪ {Hxi(yi) :

i = 0, 1, . . . , k − 1, k + 1, . . . , n} ∪ {Hyi(xi) : i = 0, 1, . . . , n} ∪ [V ∩ {Hx0
(y0) ∪

Hy0(x0)∪. . .∪Hyn(xn)∪Hxn
(yn)}c]. Then the only member of VHxk

(yk) which

contains the point a is Hxk
(yk) ∩Ob(a) .

If in addition (X, τ) is paracompact, this cover is a normally open cover of X.

So, there exists a normal sequence of open covers (WHxk
(yk)

1 )
′
, (WHxk

(yk)

2 )
′
, . . .

such that (WHxk
(yk)

1 )
′

= VHxk
(yk). Now consider one element of {Hxi

(yi) : i =

0, 1, . . . , k − 1, k + 1, . . . , n} ∪ {Hyi(xi) : i = 0, 1, . . . , n} [which are members

of VHxk
(yk) ] say Hyl(xl) and take an open cover (WHxk

(yk)
r )

′
of the above

normal sequence of open covers. If (WHxk
(yk)

r )
′

does not contain any sub-

set of Hyl(xl), then Hyl(xl) must belongs to (WHxk
(yk)

r )
′

and in this case we

keep (WHxk
(yk)

r )
′

unchanged, but if (WHxk
(yk)

r )
′

contains at least one subset
of Hyl(xl) then two cases arises:

Case-I: Hyl(xl) ∈ (WHxk
(yk)

r )
′
. Case-II: Hyl(xl) 6∈ (WHxk

(yk)
r )

′
.

In Case-I, we delete all subsets ofHyl(xl) exceptHyl(xl) itself from (WHxk
(yk)

r )
′
.

For Case-II, we delete all subsets of Hyl(xl) from (WHxk
(yk)

r )
′

and take Hyl(xl)

in (WHxk
(yk)

r )
′
. We do this for each of (WHxk

(yk)

1 )
′
, (WHxk

(yk)

2 )
′
, . . . and for

each element of {Hxi
(yi) : i = 0, 1, . . . , k − 1, k + 1, . . . , n} ∪ {Hyi(xi) : i =

0, 1, . . . , n} and get a new sequence of open covers say (WHxk
(yk)

1 ), (WHxk
(yk)

2 ),

. . . which is again a normal sequence of open covers of X. Here clearlyWHxk
(yk)

1 =
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VHxk
(yk). Let µ

′

Hxk
(yk)

= {WHxk
(yk)

1 , WHxk
(yk)

2 , . . .}, then µ
′

Hxk
(yk)

forms

a base for some uniformity, say µHxk
(yk) on X, and because of the discus-

sion before Theorem 4, which induces a uniform topology τµHxk
(yk)

∈ F ,

the family of all proper nontrivial uniformizable subtopologies of τ . So
we get τµHx0

(y0)
, τµHx1

(y1)
, . . . , τµHxn (yn)

, τµHy0
(x0)

. . . τµHyn (xn)
i.e. 2(n + 1) =

2(n+ 1)C1
topologies which are clearly members of F . One can check that all

these 2(n+ 1) topologies are different. Now if we start with taking two arbi-
trary elements of {Hyi(xi) : i = 0, 1, . . . , n}∪{Hxi

(yi) : i = 0, 1, . . . , n} instead
of one and do the same procedure we get 2(n+ 1)C2

different topologies of the
form τµ{Hx0

(y0),Hx1
(y1)} , τµ{Hx0

(y0),Hx2
(y2)} . . . etc. which are all distinct mem-

bers of F . Also if we start with the open cover V of X then we get a topology
τV in F . So we get 2(n+ 1)C0 + 2(n+ 1)C1 + . . .+ 2(n+ 1)C2(n+1)

= 22(n+1)

distinct topologies in F . Hence by the mathematical induction, we have:

Theorem 5. If (X, τ) be a paracompact (T2) zero-dimensional space contain-
ing no isolated points and if F be the family of all proper nontrivial uniformiz-
able subtopologies of τ then |F| ≥ ℵ0.

Remark 3. The cardinality of non-trivial proper uniformizable subtopologies
of the Cantor space is at least ℵ0. Now using the next theorem, we establish
Theorem 7:

Theorem 6 ([1]). A topological space (X, τ) is disconnected iff it has an open

cover U consisting of proper subsets of X such that U
?
< U .

Theorem 7. If (X, τ) is non uniformizable, connected with card(X) > ℵ0 and
card(τ) is finite then there is no proper non-trivial uniformizable subtopology
of (X, τ).

Remark 4. The condition that card(τ) is finite can not be dropped. In Ex-
ample 3, that (R, τ) is a non-uniformizable connected space with card(R) > ℵ0
and card(τ) is infinite; but it has a non-trivial proper uniformizable subtopol-
ogy viz. the usual topology U .
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