Pieter C. Allaart, ${ }^{*}$ Department of Mathematics, University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203-5017. email:
allaart@unt.edu
Kiko Kawamura, ${ }^{\dagger}$ Department of Mathematics, University of North Texas, 1155 Union Circle \#311430, Denton, TX 76203-5017. email: kiko@unt.edu

WHERE DOES TAKAGI'S CONTINUOUS, NOWHERE DIFFERENTIABLE FUNCTION HAVE AN INFINITE DERIVATIVE?

1 Introduction.

Takagi's function [5] is defined by

$$
T(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \phi^{(n)}(x), \quad 0 \leq x \leq 1
$$

where $\phi^{(1)}:=\phi$ is the "tent map" defined by

$$
\phi(x):= \begin{cases}2 x, & \text { if } 0 \leq x \leq 1 / 2 \\ 2-2 x, & \text { if } 1 / 2 \leq x \leq 1\end{cases}
$$

and inductively, $\phi^{(n)}:=\phi \circ \phi^{(n-1)}$ for $n \geq 2$. The function T is continuous and does not have a finite derivative anywhere. But at which points does it have an infinite derivative? This question appeared to be settled in 1936 by Begle and Ayres [2]. Let O_{n} be the number of zeros, and $I_{n}=n-O_{n}$ the number of ones, among the first n binary digits of x, and let $D_{n}=O_{n}-I_{n}$. Begle and Ayres

[^0]claimed that $T^{\prime}(x)=\infty$ if $D_{n} \rightarrow \infty$, and $T^{\prime}(x)=-\infty$ if $D_{n} \rightarrow-\infty$. But their proof contained several mistakes. In fact, Krüppel [4] recently published the following counterexample to their claim: Let $x=\sum_{n=1}^{\infty} 2^{-a_{n}}$, where $a_{n}=4^{n}$. For this x, we certainly have $D_{n} \rightarrow \infty$. But one can show that the secant slopes over a suitably chosen sequence of dyadic intervals about x tend in fact to $-\infty$, so that a derivative of $+\infty$ is impossible. (See [1, Section 2].)

The purpose of this article is to give a complete characterization of the points x at which T has an infinite derivative. Since the condition we obtain is somewhat opaque, we illustrate it with several examples. This is done in Section 2. The proofs appear in [1]. In Section 3 we extend a recent result of Krüppel [4] concerning the modulus of continuity of T.

2 Improper derivatives.

It is well known (e.g. [2, 4]) that if x is a dyadic rational, then the right and left derivatives of T at x are $+\infty$ and $-\infty$, respectively. We now treat the non-dyadic case.

Theorem 1. Let $x \in(0,1)$ be non-dyadic, and write

$$
\begin{equation*}
x=\sum_{n=1}^{\infty} 2^{-a_{n}}, \quad 1-x=\sum_{n=1}^{\infty} 2^{-b_{n}} \tag{1}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are strictly increasing sequences of positive integers, determined uniquely by x. Then:
(i) $T^{\prime}(x)=+\infty$ if and only if

$$
\begin{equation*}
a_{n+1}-2 a_{n}+2 n-\log _{2}\left(a_{n+1}-a_{n}\right) \rightarrow-\infty \tag{2}
\end{equation*}
$$

(ii) $T^{\prime}(x)=-\infty$ if and only if

$$
\begin{equation*}
b_{n+1}-2 b_{n}+2 n-\log _{2}\left(b_{n+1}-b_{n}\right) \rightarrow-\infty \tag{3}
\end{equation*}
$$

In fact, (ii) follows directly from (i) by the symmetry of the Takagi function: $T(x)=T(1-x)$ for $0 \leq x \leq 1$. So it is sufficient to prove (i).
Remark 1. Conditions (2) and (3) may look a bit mysterious. The examples below aim to shed more light on them. Since the conditions are quite analogous, we focus on (2).

Example 1. If $D_{n} \rightarrow \infty$ and the number of consecutive 0's in the binary expansion of x is bounded, then $T^{\prime}(x)=+\infty$. Similarly, if $D_{n} \rightarrow-\infty$ and the number of consecutive 1's is bounded, then $T^{\prime}(x)=-\infty$.

Example 2. If $\lim \sup _{n \rightarrow \infty} a_{n+1} / a_{n}>2$, then (2) fails.
Example 3. A sufficient condition for (2) to hold is that, for some $0<\varepsilon \leq 1$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=2-\varepsilon \quad \text { and } \quad \liminf _{n \rightarrow \infty} \frac{a_{n}}{n}>\frac{2}{\varepsilon} \tag{4}
\end{equation*}
$$

For instance, (2) holds for $a_{n}=3 n$; for any increasing polynomial of degree 2 or higher; and for any exponential sequence $a_{n}=\left\lfloor\alpha^{n}\right\rfloor$ with $1<\alpha<2$. It also holds when a_{n} is the n-th prime number.

Example 4. The sequence $a_{n}=2^{n}$ does not satisfy (2); neither does $a_{n}=$ $2^{n}+n$. But $a_{n}=2^{n}+(1+\varepsilon) n$ satisfies (2) for any $\varepsilon>0$. In this example, the logarithmic term in (2) makes all the difference.

An important subset of $[0,1]$ is formed by the points x whose binary expansion has a density; that is, points $x=\sum_{k=1}^{\infty} 2^{-k} \varepsilon_{k}$ for which the limit

$$
\begin{equation*}
d_{1}(x):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \tag{5}
\end{equation*}
$$

exists. Note that $d_{1}(x)$ expresses the long-run proportion of 1's in the binary expansion of x. If it exists, we define

$$
\begin{equation*}
d_{0}(x):=1-d_{1}(x) \tag{6}
\end{equation*}
$$

to denote the long-run proportion of 0's.
Corollary 1. Let x be a non-dyadic point, and suppose $d_{1}(x)$ exists.
(i) If $0<d_{1}(x)<1 / 2$, then $T^{\prime}(x)=+\infty$.
(ii) If $1 / 2<d_{1}(x)<1$, then $T^{\prime}(x)=-\infty$.
(iii) If $d_{1}(x)=0$ and $\limsup \operatorname{sim}_{n \rightarrow \infty} a_{n+1} / a_{n}<2$, then $T^{\prime}(x)=+\infty$.
(iv) If $d_{1}(x)=1$ and $\lim \sup _{n \rightarrow \infty} b_{n+1} / b_{n}<2$, then $T^{\prime}(x)=-\infty$.

Using Corollary 1 and a result of Besicovitch, we get
Corollary 2. Let dim_{H} denote Hausdorff dimension. Then we have

$$
\operatorname{dim}_{H}\left\{x: T^{\prime}(x)=\infty\right\}=\operatorname{dim}_{H}\left\{x: T^{\prime}(x)=-\infty\right\}=1
$$

Corollary 1 left out the binary normal numbers; that is, those numbers x for which $d_{1}(x)=1 / 2$. For a discussion of this case, we refer to the full paper [1].

3 The modulus of continuity.

In this final section we present an exact result concerning the modulus of continuity of T. Let $d_{1}(x)$ and $d_{0}(x)$ denote the densities of 1 and 0 in the binary expansion of x, respectively, as in (5) and (6).
Definition 1. A point $x \in[0,1]$ is density-regular if $d_{1}(x)$ exists and one of the following holds:
(a) $0<d_{1}(x)<1$; or
(b) $d_{1}(x)=0$ and $a_{n+1} / a_{n} \rightarrow 1$; or
(c) $d_{1}(x)=1$ and $b_{n+1} / b_{n} \rightarrow 1$.

Here, $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are the sequences determined by (1).
The following theorem extends a result of Krüppel [4], who proved it for rational points x with a nonterminating binary expansion.
Theorem 2. For non-dyadic x, the limit

$$
\lim _{h \rightarrow 0} \frac{T(x+h)-T(x)}{h \log _{2}(1 /|h|)}
$$

exists if and only if x is density-regular, in which case the limit is equal to $d_{0}(x)-d_{1}(x)$.

References

[1] P. C. Allaart and K. Kawamura, The improper infinite derivatives of Takagi's nowhere-differentiable function, J. Math. Anal. Appl. 372 (2010), no. 2, 656-665.
[2] E. G. Begle and W. L. Ayres, On Hildebrandt's example of a function without a finite derivative, Amer. Math. Monthly 43 (1936), no. 5, 294296.
[3] N. Kono, On generalized Takagi functions, Acta Math. Hungar. 49 (1987), 315-324.
[4] M. Krüppel, On the extrema and the improper derivatives of Takagi's continuous nowhere differentiable function, Rostock. Math. Kolloq 62 (2007), 41-59.
[5] T. Takagi, A simple example of the continuous function without derivative, Phys.-Math. Soc. Japan 1 (1903), 176-177. The Collected Papers of Teiji Takagi, S. Kuroda, Ed., Iwanami (1973), 5-6.

[^0]: Mathematical Reviews subject classification: Primary: 26A27; Secondary: 26A15
 Key words: Takagi's function, Nowhere-differentiable function, Improper derivative, Modulus of continuity
 *Supported in part by Japanese GCOE Program G08: "Fostering Top Leaders in Mathematics - Broadening the Core and Exploring New Ground".
 ${ }^{\dagger}$ Supported in part by Japanese GCOE Program G08: "Fostering Top Leaders in Mathematics - Broadening the Core and Exploring New Ground".

