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WHERE DOES TAKAGI’S CONTINUOUS,
NOWHERE DIFFERENTIABLE FUNCTION

HAVE AN INFINITE DERIVATIVE?

1 Introduction.

Takagi’s function [5] is defined by

T (x) =

∞∑
n=1

1

2n
φ(n)(x), 0 ≤ x ≤ 1,

where φ(1) := φ is the “tent map” defined by

φ(x) :=

{
2x, if 0 ≤ x ≤ 1/2,

2− 2x, if 1/2 ≤ x ≤ 1;

and inductively, φ(n) := φ◦φ(n−1) for n ≥ 2. The function T is continuous and
does not have a finite derivative anywhere. But at which points does it have an
infinite derivative? This question appeared to be settled in 1936 by Begle and
Ayres [2]. Let On be the number of zeros, and In = n−On the number of ones,
among the first n binary digits of x, and let Dn = On − In. Begle and Ayres
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claimed that T ′(x) =∞ if Dn →∞, and T ′(x) = −∞ if Dn → −∞. But their
proof contained several mistakes. In fact, Krüppel [4] recently published the
following counterexample to their claim: Let x =

∑∞
n=1 2−an , where an = 4n.

For this x, we certainly have Dn → ∞. But one can show that the secant
slopes over a suitably chosen sequence of dyadic intervals about x tend in fact
to −∞, so that a derivative of +∞ is impossible. (See [1, Section 2].)

The purpose of this article is to give a complete characterization of the
points x at which T has an infinite derivative. Since the condition we obtain
is somewhat opaque, we illustrate it with several examples. This is done in
Section 2. The proofs appear in [1]. In Section 3 we extend a recent result of
Krüppel [4] concerning the modulus of continuity of T .

2 Improper derivatives.

It is well known (e.g. [2, 4]) that if x is a dyadic rational, then the right and
left derivatives of T at x are +∞ and −∞, respectively. We now treat the
non-dyadic case.

Theorem 1. Let x ∈ (0, 1) be non-dyadic, and write

x =

∞∑
n=1

2−an , 1− x =

∞∑
n=1

2−bn , (1)

where {an} and {bn} are strictly increasing sequences of positive integers, de-
termined uniquely by x. Then:

(i) T ′(x) = +∞ if and only if

an+1 − 2an + 2n− log2(an+1 − an)→ −∞. (2)

(ii) T ′(x) = −∞ if and only if

bn+1 − 2bn + 2n− log2(bn+1 − bn)→ −∞. (3)

In fact, (ii) follows directly from (i) by the symmetry of the Takagi function:
T (x) = T (1− x) for 0 ≤ x ≤ 1. So it is sufficient to prove (i).

Remark 1. Conditions (2) and (3) may look a bit mysterious. The exam-
ples below aim to shed more light on them. Since the conditions are quite
analogous, we focus on (2).

Example 1. If Dn → ∞ and the number of consecutive 0’s in the binary
expansion of x is bounded, then T ′(x) = +∞. Similarly, if Dn → −∞ and

the number of consecutive 1’s is bounded, then T ′(x) = −∞. ?
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Example 2. If lim supn→∞ an+1/an > 2, then (2) fails. ?

Example 3. A sufficient condition for (2) to hold is that, for some 0 < ε ≤ 1,

lim sup
n→∞

an+1

an
= 2− ε and lim inf

n→∞

an
n
>

2

ε
. (4)

For instance, (2) holds for an = 3n; for any increasing polynomial of degree
2 or higher; and for any exponential sequence an = bαnc with 1 < α < 2. It

also holds when an is the n-th prime number. ?

Example 4. The sequence an = 2n does not satisfy (2); neither does an =
2n + n. But an = 2n + (1 + ε)n satisfies (2) for any ε > 0. In this example,

the logarithmic term in (2) makes all the difference. ?

An important subset of [0, 1] is formed by the points x whose binary ex-
pansion has a density; that is, points x =

∑∞
k=1 2−kεk for which the limit

d1(x) := lim
n→∞

1

n

n∑
k=1

εk (5)

exists. Note that d1(x) expresses the long-run proportion of 1’s in the binary
expansion of x. If it exists, we define

d0(x) := 1− d1(x) (6)

to denote the long-run proportion of 0’s.

Corollary 1. Let x be a non-dyadic point, and suppose d1(x) exists.

(i) If 0 < d1(x) < 1/2, then T ′(x) = +∞.

(ii) If 1/2 < d1(x) < 1, then T ′(x) = −∞.

(iii) If d1(x) = 0 and lim supn→∞ an+1/an < 2, then T ′(x) = +∞.

(iv) If d1(x) = 1 and lim supn→∞ bn+1/bn < 2, then T ′(x) = −∞.

Using Corollary 1 and a result of Besicovitch, we get

Corollary 2. Let dimH denote Hausdorff dimension. Then we have

dimH{x : T ′(x) =∞} = dimH{x : T ′(x) = −∞} = 1.

Corollary 1 left out the binary normal numbers; that is, those numbers x
for which d1(x) = 1/2. For a discussion of this case, we refer to the full paper
[1].
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3 The modulus of continuity.

In this final section we present an exact result concerning the modulus of
continuity of T . Let d1(x) and d0(x) denote the densities of 1 and 0 in the
binary expansion of x, respectively, as in (5) and (6).

Definition 1. A point x ∈ [0, 1] is density-regular if d1(x) exists and one of
the following holds:

(a) 0 < d1(x) < 1; or
(b) d1(x) = 0 and an+1/an → 1; or
(c) d1(x) = 1 and bn+1/bn → 1.

Here, {an} and {bn} are the sequences determined by (1).

The following theorem extends a result of Krüppel [4], who proved it for
rational points x with a nonterminating binary expansion.

Theorem 2. For non-dyadic x, the limit

lim
h→0

T (x+ h)− T (x)

h log2(1/|h|)
exists if and only if x is density-regular, in which case the limit is equal to
d0(x)− d1(x).
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