Paul Musial, Chicago State University, Department of Mathematics and Computer Science, 9501 South King Drive Chicago, IL 60628. email: pmusial@csu.edu

THE L^r-VARIATIONAL INTEGRAL

We define the class of L^r -variational integrable functions and show that it is equivalent to the class of L^r - Henstock Kurzweil integrable functions. We also define the class of functions of L^r -bounded variation.

In [3] we have the following definition: let $r \ge 1$ and let $f : [a, b] \to R$. We say that f is L^r -Henstock-Kurzweil integrable on [a, b] $(f \in HK_r([a, b]))$ if there exists a function $F \in L^r([a, b])$ so that for any $\varepsilon > 0$ there exists a gauge $\delta > 0$ defined on [a, b] so that if $P = \{(x_i, [c_i, d_i])\}_{i=1}^n$ is a δ -fine tagged partition of [a, b] then

$$\sum_{i=1}^{n} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(y) - F(x_{i}) - f(x_{i})(y - x_{i})|^{r} dy \right)^{1/r} < \varepsilon.$$

Let $r \geq 1$ and let $f : [a, b] \to R$. We say that f is L^r -variational integrable on [a, b] if there exists a function $F \in L^r([a, b])$ having the following property: for any $\varepsilon > 0$ there exists a non-decreasing function $\phi : [a, b] \to R$ and a gauge $\delta > 0$ so that $\phi(b) - \phi(a) < \varepsilon$ and whenever (x, [c, d]) is a δ -fine tagged subinterval of [a, b] we have

$$\left(\frac{1}{d-c}\int_{c}^{d}\left|F\left(y\right)-F\left(x\right)-f\left(x\right)\left(y-x\right)\right|^{r}dy\right)^{1/r} < \phi\left(d\right) - \phi\left(c\right)$$

Theorem 1: $f \in HK_r([a, b])$ if and only if f is L^r -variational integrable on [a, b].

Sketch of proof: We proceed in a manner similar to that in which the class of Henstock-Kurzweil integrable functions is shown to be equivalent to the class of variational integrable functions. See [2].

We now define the class of functions of L^r -bounded variation. Let $r \ge 1$, let $f : [a, b] \to R$ and let E be a measurable subset of [a, b]. We say that

96

f is L^r -bounded variation on E $(f \in BV_r([E]))$ if there exist M > 0 and a gauge $\delta > 0$ defined on E so that if $P = \{(x_i, [c_i, d_i])\}_{i=1}^n$ is a finite collection of δ -fine tagged subintervals of [a, b] having tags in E, then

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r \, dy \right)^{1/r} < M.$$

Theorem 2: If $f \in BV_r(E)$ then we can find $\{E_n\}_{n \ge 1}$ so that

$$E = \bigcup_{n=1}^{\infty} E_n$$

and $f \in BV(E_n)$ [2] for all n.

Sketch of proof: We proceed in a manner similar to that in which it is shown that if F is absolutely continuous in L^r sense on E then there exist $\{E_n\}$ so that $E = \bigcup_{n=1}^{\infty} E_n$ and F is absolutely continuous on E_n for all n. See [3].

References

- L. Gordon, Perron's Integral for Derivatives in L^r, Studia Mathematica, 28 (1967), 295–316.
- [2] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, 4, American Mathematical Society, 1994.
- [3] P. Musial and Y. Sagher, The L^r Henstock-Kurzweil Integral, Studia Mathematica, 160 (2004), 53–81.