James Adduci,* Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A. email: adducij@math.ohio-state.edu

BASIS PROPERTIES OF THE EIGENSYSTEM OF A PERTURBED HARMONIC OSCILLATOR

Abstract

We consider the perturbed harmonic oscillator $L=T+B$, with $T=-d^{2} / d x^{2}+x^{2}$ and $B=b(x)$ with domain in $L^{2}(\mathbb{R})$. In [1] it is shown that the eigensystem of L forms an unconditional basis for $L^{2}(\mathbb{R})$ when b belongs to certain function spaces, for example $L^{p}(\mathbb{R})$ when $2 \leq p<\infty$. These results are summarized.

1 Introduction.

Consider the harmonic oscillator

$$
T=-\frac{d^{2}}{d x^{2}}+x^{2}
$$

The normalized eigenfunctions of T form an orthonormal basis in $L^{2}(\mathbb{R})$. They are the well-known Hermite functions $h_{k}(x),\left\|h_{k}\right\|_{2}=1$ (see for example [6, Ch. 5, Sect. 4] , [7, Ch XII, Sect. 6.4]). The eigenvalue associated with the eigenfunction h_{k} is $\lambda_{k}=2 k+1$, i.e. $T h_{k}=(2 k+1) h_{k}$. Consider a perturbation of $T, L=T+B$ where B satisfies $\operatorname{dom} T \subset \operatorname{dom} B$. If

$$
\begin{equation*}
\|B\|<1 \tag{1}
\end{equation*}
$$

then it can be shown that the eigensystem of L forms an unconditional basis for $L^{2}(\mathbb{R})$. Furthermore, it is possible to construct an operator B with $\|B\|=1$ such that the eigensystem of L is not a basis at all (see [1, section 6]), so

[^0]condition (1) cannot generally be improved. In [1], we consider the case where B is a multiplication operator
$$
B f=b(x) f(x)
$$

In this case, condition (1) can be greatly improved (see Theorem 1).

2 Main Results.

Consider the following conditions on b :

$$
\begin{align*}
& b \in L^{p}(\mathbb{R}) \quad \text { for some } p \text { with } \quad 2 \leq p<\infty \tag{2a}\\
& b \in L_{0}^{\infty}(\mathbb{R})=\left\{\phi \in L^{\infty}(\mathbb{R}): \lim _{T \rightarrow \infty} \text { ess } \sup _{|t|>T}|\phi(t)|=0\right\} \tag{2b}\\
& b \in L_{\zeta}(\mathbb{R})=\left\{\phi: \phi(x) /(1+|x|)^{\zeta} \in L^{2}(\mathbb{R})\right\} \quad \text { with } \quad \zeta<1 / 6 \tag{2c}
\end{align*}
$$

The main result of [1] is the following.
Theorem 1. Let b belong to any one of the spaces (2a)-(2c). Then the spectrum of L is discrete and eventually simple. The eigensystem for L forms an unconditional basis in $L^{2}(\mathbb{R})$.

The proof of this theorem uses the following lemma of Kato which gives sufficient conditions for an eigensystem of a perturbation of a self-adjoint operator to be an unconditional basis [4], [5, Ch5, Lemma 4.17a].

Lemma 2. Let $\left\{Q_{k}^{0}\right\}_{j \in \mathbb{Z}_{+}}$be a complete family of orthogonal projections in a Hilbert space X and let $\left\{Q_{k}\right\}_{j \in \mathbb{Z}_{+}}$be a family of (not necessarily orthogonal) projections such that $Q_{j} Q_{k}=\delta_{j, k} Q_{j}$. Assume that

$$
\begin{array}{r}
\operatorname{dim}\left(Q_{0}^{0}\right)=\operatorname{dim}\left(Q_{0}\right)=m<\infty \\
\sum_{j=1}^{\infty}\left\|Q_{j}^{0}\left(Q_{j}-Q_{j}^{0}\right) u\right\|^{2} \leq c_{0}\|u\|^{2}, \quad \text { for every } \quad u \in X \tag{4}
\end{array}
$$

where c_{0} is a constant smaller than 1. Then there is a bounded operator $W: X \rightarrow X$ with bounded inverse such that $Q_{j}=W^{-1} Q_{j}^{0} W$ for $j \in \mathbb{Z}_{+}$.

Other ingredients of the proof of Theorem 1 in [1] include asymptotic estimates for the Hermite functions [8, Lemma 1.5.1, Lemma 1.5.2, p.26-27], [2, Lemma 4] and boundedness of the discrete Hilbert transform considered on certain weighted $\ell^{2}(\mathbb{N})$ spaces [3, Sect. 8.12 statement 294], [1, Appendix].

References

[1] J. Adduci and B. Mityagin, Eigensystem of an L^{2}-perturbed harmonic oscillator is an unconditional basis, arXiv:0912.2722v2.
[2] E. Akhmerova, The asymptotics of the spectrum of nonsmooth perturbations of a harmonic oscillator. (Russian) Sibirsk. Mat. Zh. 49 (2008), no. 6, 1216-1234; translation in Sib. Math. J. 49(6) (2008), 968-984
[3] G. H. Hardy, D.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge (1988). Inequalities, Cambridge Univ. Press, Cambridge, 1952.
[4] T. Kato, Similarity for sequences of projections, Bull. Amer. Math. Soc. 73 1967, 904-905.
[5] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag, Berlin, 1980.
[6] B.M. Levitan and I. S. Sargsjan , Introduction to spectral theory: selfadjoint ordinary differential operators. AMS, (1973).
[7] E. Stein, Harmonic Analysis. Princeton University Press. 1993.
[8] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton University Press, 1993.

[^0]: Mathematical Reviews subject classification: Primary: 47E05, 34L40; Secondary: 34L10
 Key words: Harmonic oscillator, Hermite functions, discrete Hilbert transform, uncon$\underset{*}{\text { ditional basis }}$

