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ON RECOVERY OF A FUNCTION FROM
ITS TRIGONOMETRIC INTEGRAL.

We start with a short review of results in the theory of uniqueness for
trigonometric series, thus making a link between our results for trigonometric
integral and classical theory.

One of the principle questions concerning trigonometric series

∞∑
n=−∞

cne
inx

which attracted attention of many mathematicians was the question of recov-
ering the coefficients of every convergent trigonometric series from its sum.
The first answer to this question was the Du Bois Reymond–Lebesgue theo-
rem [1, 2] which states that each series everywhere convergent to a bounded
Lebesgue integrable function f is the Fourier–Lebesgue series of f , i.e., its
coefficients are recovered by means of Fourier formulas. This result was later
generalized by Ch. Vallée-Poussin [3] on the whole class of Lebesgue integrable
functions.

It was noted by A. Denjoy that not each everywhere convergent trigono-
metric series is a Fourier–Lebesgue series. For example, the series:

∞∑
n=2

sinnx

lnn

is convergent everywhere as a sine-series with monotonically decreasing coef-
ficients but it is not a Fourier–Lebesgue series. Thus, to recover coefficients
of each everywhere convergent trigonometric series, one needs a more general
integration process than the Lebesgue one.

A. Denjoy was the first who constructed such integration process. In 1912
he introduced an integral [4], called totalization T2s, which allows to recover
a function from its second symmetric Riemann derivative. This property to-
gether with the Riemann theory for trigonometric series shows that the Denjoy
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integral handles the problem of recovery. Other second order integrals where
constructed by J. Burkill [5] (SCP -integral), J. Marcinkiewicz, A. Zygmund
[6] (T (P )-integral) and R. James [7] (P 2-integral).

In 1989 D. Preiss and B.S. Thomson [8] introduced an integral of the
first order which also solves the problem of recovery. This integral, called
approximate symmetric Henstock–Kurzweil integral, recovers a measurable
function from its approximate symmetric derivative and handles the problem
of recovery with the aid of the Lebesgue theory of trigonometric series.

Let I be the set of all nondegenerate closed intervals on R.

Definition 1. A set β ⊂ I × R is called measurable approximate symmetric
element, if

(1) for each pair (I, x) ∈ β the interval I is symmetric with respect to x; i.e.,
I = [x− t, x+ t]; and T = {(x, t) : ([x− t, x+ t], x) ∈ β} is a measurable
set on R× (0,∞),

(2) for all x ∈ R : lim
h↘0

µ
(
{t ∈ (0, h) : (x, t) /∈ T}

)
/h = 0.

A finite collection of pairs π = {(I, x)} is called a division (a partition of
interval [a, b]) if for any different pairs (I1, x1), (I2, x2) from π intervals I1 and
I2 do not overlap (and

⋃
I = [a, b]).

Theorem (covering theorem, [8]). For any measurable approximate symmet-
ric element β there exists a set B ⊂ R of full measure such that for any closed
interval with endpoints in B there is a tagged partition π ⊂ β of this interval.

Let us denote by AB the set of all measurable approximate symmetric ele-
ments containing at least one partition of every closed interval with endpoints
in a set B.

In view of covering theorem the following notion is well defined.

Definition 2. A function f , defined everywhere on R, is called integrable
in the sense of approximate symmetric Henstock–Kurzweil integral (ASH-
integrable), if there exists a set B of full measure and a function F on B
such that for any ε > 0 there is an element β ∈ AB such that for any division
π= {([yi, zi], (yi + zi)/2)}⊂β on the line, with yi, zi ∈ B, the inequality∣∣∣∑

π

(
f((yi + zi)/2)(zi − yi)− (F (zi)− F (yi))

)∣∣∣ < ε

holds. For each pair a, b ∈ B the number F (b)−F (a) is called the approximate
symmetric Henstock–Kurzweil integral (ASH-integral) of the function f and

is denoted as (ASH)
b∫
a

f(x)dx.
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The function F , defined on B, is called an indefinite ASH-integral of the
function f .

Definition 3. A function F defined on a measurable set E is called approxi-
mately symmetrically continuous at x, if

ap-lim
h↘0

(F (x+ h)− F (x− h)) = 0.

A function F defined on a measurable set E is called approximately sym-
metrically differentiable at x, if there exists a finite limit

ap-lim
h↘0

F (x+ h)− F (x− h)
2h

= F ′sap(x).

As we have already mentioned, the main property of ASH-integral is ex-
pressed in the following theorem.

Theorem (Preiss–Thomson, [8]). If a function F is measurable, approxi-
mately symmetrically continuous at each point of the line and has nearly
everywhere approximate symmetric derivative f , then the function f = F ′sap
is ASH-integrable with F being an indefinite integral.

One can verify that this property together with the Lebesgue theory for
trigonometric series enables ASH-integral to handle the problem of recovery.

Theorem (Preiss–Thomson, [8]). If trigonometric series converges nearly ev-
erywhere to a finite function f , then functions f(x) and f(x)e−inx, n ∈ Z, are
ASH-integrable and

cn =
1

2π

p+2π∫
p

f(x) e−inxdx

for almost all p.

Fourier series in practice serve as a model of periodical processes. The need
to investigate also nonperiodical processes led to the generalization of series
to integrals, what brought in view the so-called Fourier integral

F[f ](t) =

∞∫
−∞

eitxf̂ [x] dx, f̂ [x] =
1

2π

∞∫
−∞

f(λ)e−iλx dλ,

and the theory of trigonometric integrals; i.e., integrals of the type
∞∫
−∞

eiλxc(λ)dλ = lim
ω→∞

(L)

ω∫
−ω

eiλxc(λ)dλ.
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The problem of recovery was naturally brought into the theory of trigono-
metric integrals. In the beginning of the 20th century there appeared analogs
of the Vallée-Poussin theorem. One the most general was established by A.
Offord [9].

Theorem (Offord). Let c be locally Lebesgue integrable and the integral

∞∫
−∞

eiλxc(λ)dλ

converge everywhere to a finite locally Lebesgue integrable function f . Then

c(λ) = (C, 1)
1

2π

∞∫
−∞

f(x)e−iλxdx = lim
ω→∞

1

2πω

ω∫
0

dt

t∫
−t

f(x)e−iλxdx

for almost all λ.

This theorem is no longer true without the assumption f is locally Lebesgue
integrable. Thus, again we need a more general process of integration to solve
the problem entirely. We would show that ASH-integral handles this problem.

At first we develop the Lebesgue theory for trigonometric integrals. Let c
fulfil the condition N0:

lim
u→±∞

{
max
06h61

∣∣∣ u+h∫
u

c(λ)dλ
∣∣∣} = 0.

Note, that this condition necessarily holds for any c with trigonometric integral
convergent on a set of positive measure.

Integrating formally an integral
∞∫
−∞

eiλxc(λ) dλ define the function

L(x) =

∫
|λ|<1

eiλx − 1

iλ
c(λ) dλ+

∫
|λ|>1

eiλx

iλ
c(λ) dλ.

Theorem 1. Assume c fulfils condition N0. Then the function L is finite
almost everywhere, approximately symmetrically continuous everywhere and
approximately continuous at each point where L is finite. Moreover, if the
trigonometric integral converges at x to s then there exists L′sap(x) = s.
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One of the peculiarities of the passage from trigonometric series to trigono-
metric integrals is that to prove the analog of the Preiss–Thomson theorem,
we need to use properties of the ASH-integral together with not only the
Lebesgue theory, but also the Riemann theory for trigonometric integrals and
so-called equiconvergence theorems. With the aid of the latter two, one can
prove the following statements.

Statement 1. If a function c is locally Lebesgue integrable and fulfils condi-
tion N0, then for almost all µ

lim
ω→∞

1

π

∞∫
−∞

c(µ+ t)
2 sin2 ωt2
ωt2

dt = c(µ).

Statement 2. If the trigonometric integral of a function c converges nearly
everywhere, then for almost all µ

lim
ω→∞

1

πω

ω∫
0

∞∫
−∞

c(λ+ µ)
sinλt

λ
dλ dt = c(µ).

By means of the above results, an analog of the Preiss–Thomson theorem
for trigonometric integrals can be proved.

Theorem 2. If a function c is locally Lebesgue integrable and its trigonomet-
ric integral converges nearly everywhere to a finite function f(x), then f(x)
and f(x)e−iµx are ASH-integrable and for almost all µ

c(µ) = (C, 1)
1

2π

∞∫
−∞

f(x)e−iµx dx =

= lim
ω→∞

1

2πω

ω∫
0

( t∫
−t

f(x)e−iµx dx

)
dt, (?)

where the integral over x is understood in the ASH sense and the integral
over t is understood in Lebesgue sense.

Corollary 1. Every countable set is a set of uniqueness for trigonometric
integral.

Corollary 2. If the trigonometric integral of a function c converges nearly
everywhere to a finite function f and B is the set of points at which an
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indefinite ASH-integral of f is finite, then for all a, b ∈ B

(ASH)

b∫
a

f(x) dx = (L)

∞∫
−∞

eiλb − eiλa

iλ
c(λ )dλ.

Corollary 3. If the trigonometric integral of a function c converges nearly
everywhere to a finite function f > g and g is locally Lebesgue (Henstock–
Kurzweil) integrable, then f is also locally Lebesgue (Henstock–Kurzweil) in-
tegrable and for almost all µ the function c is recovered by the formula (?),
where the integral over x is understood in the sense of Lebesgue (Henstock–
Kurzweil).
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