Erik Talvila,^{*} Mathematics and Statistics, University of the Fraser Valley, Chilliwack, BC V2P 6T4, Canada. email: Erik.Talvila@ufv.ca

CONVOLUTIONS WITH THE CONTINUOUS PRIMITIVE INTEGRAL

Introduction. 1

The convolution of two functions f and g on the real line is $f * g(x) = \int_{-\infty}^{\infty} f(x - x) dx$ y = q(y) dy. In this talk we consider convolutions for the continuous primitive integral. This integral extends the Lebesgue, Henstock-Kurzweil and wide Denjoy integrals on the real line and has a very simple definition in terms of distributional derivatives. All of the results presented are in the paper [4].

The test functions are $\mathcal{D} = C_c^{\infty}(\mathbb{R})$. The distributions are denoted \mathcal{D}' and are the continuous linear functions on \mathcal{D} . For $T \in \mathcal{D}'$ and $\phi \in \mathcal{D}$ we write $\langle T, \phi \rangle \in \mathbb{R}$. If $f \in L^1_{loc}$ then $\langle T_f, \phi \rangle = \int_{-\infty}^{\infty} f(x)\phi(x) dx$ defines a distribution $T_f \in \mathcal{D}'$. All distributions have derivatives of all orders that are themselves distributions. For $T \in \mathcal{D}'$ and $\phi \in \mathcal{D}$ the distributional derivative of T is T' where $\langle T', \phi \rangle = -\langle T, \phi' \rangle$. See [1] and [2] for more on distributions.

The following Banach space will be of importance; $\mathcal{B}_c = \{F : \mathbb{R} \to \mathbb{R} \mid$ $F \in C^0(\overline{\mathbb{R}}), F(-\infty) = 0$. We use the notation $F(-\infty) = \lim_{x \to -\infty} F(x)$ and $F(\infty) = \lim_{x\to\infty} F(x)$. The extended real line is denoted $\overline{\mathbb{R}} = [-\infty, \infty]$. The space \mathcal{B}_c is a Banach space under the uniform norm; $||F||_{\infty} = \sup_{x \in \mathbb{R}} |F(x)| =$ $\max_{x\in\overline{\mathbb{R}}}|F(x)|$ for $F\in\mathcal{B}_c$. The continuous primitive integral is defined by taking \mathcal{B}_c as the space of primitives. The space of integrable distributions is $\mathcal{A}_c = \{f \in \mathcal{D}' \mid f = F' \text{ for } F \in \mathcal{B}_c\}$. If $f \in \mathcal{A}_c$ with primitive $F \in \mathcal{B}_c$ then $\int_a^b f = F(b) - F(a)$ for $a, b \in \mathbb{R}$. The distributional differential equation T' = 0 has only constant solutions so the primitive $F \in \mathcal{B}_c$ satisfying F' =f is unique. Integrable distributions are then tempered and of order one. This integral, including a discussion of extensions to \mathbb{R}^n , is described in [3].

Mathematical Reviews subject classification: Primary: 26A39, 42A85, 46F10; Secondary: 46E15,

⁴⁶G12 Key words: convolution, Schwartz distribution, distributional integral, continuous primitive integral, Henstock-Kurzweil integral

^{*}Supported by the Natural Sciences and Engineering Research Council of Canada.

It is shown there that the integration by parts formula $\int_{-\infty}^{\infty} f(x)g(x) dx = F(\infty)g(\infty) - \int_{-\infty}^{\infty} F(x) dg(x)$ holds for all $f \in \mathcal{A}_c$ with primitive $F \in \mathcal{B}_c$ and all functions $g \in \mathcal{BV}$ (bounded variation). Hence, the convolution $f * g(x) = \int_{-\infty}^{\infty} f(x-y)g(y) dy$ is then well defined for all such f and g.

Theorem 1. Let $f \in \mathcal{A}_c$ and let $g \in \mathcal{BV}$. Then (a) f * g exists on \mathbb{R} (b) f * g = g * f (c) $||f * g||_{\infty} \leq |\int_{-\infty}^{\infty} f| \inf_{\mathbb{R}} |g| + ||f|| Vg \leq ||f|| ||g||_{\mathcal{BV}}$ (d) $f * g \in C^0(\overline{\mathbb{R}})$, $\lim_{x \to \pm \infty} f * g(x) = g(\pm \infty) \int_{-\infty}^{\infty} f$. (e) If $h \in L^1$ then $f * (g * h) = (f * g) * h \in C^0(\overline{\mathbb{R}})$. (f) Let $x, z \in \mathbb{R}$. Then $\tau_z(f * g)(x) = (\tau_z f) * g(x) = (f * \tau_z g)(x)$. (g) For each $f \in \mathcal{A}_c$ define $\Phi_f : \mathcal{BV} \to C^0(\overline{\mathbb{R}})$ by $\Phi_f[g] = f * g$. Then Φ_f is a bounded linear operator and $||\Phi_f|| = ||f||$. For each $g \in \mathcal{BV}$ define $\Psi_g : \mathcal{A}_c \to C^0(\overline{\mathbb{R}})$ by $\Psi_g[f] = f * g$. Then Ψ_g is a bounded linear operator and $||\Psi_g|| = ||g||_{\mathcal{BV}}$. (h) $\operatorname{supp}(f * g) \subset \operatorname{cl}(\operatorname{supp}(f) + \operatorname{supp}(g))$.

This parallels similar results when $f \in L^1$ and $g \in L^{\infty}$. See [1]. It is then seen that distributions in \mathcal{A}_c behave substantially like L^1 functions, with the Alexiewicz norm replacing the L^1 norm.

The convolution f * g exists as a Lebesgue integral almost everywhere when $f, g \in L^1$. For $f \in \mathcal{A}_c$ and $g \in L^1$ we can define the integral using a limiting procedure.

Definition 1. Let $f \in \mathcal{A}_c$ and let $g \in L^1$. Let $\{g_n\} \subset \mathcal{BV} \cap L^1$ such that $||g_n - g||_1 \to 0$. Define f * g as the unique element in \mathcal{A}_c such that $||f * g_n - f * g|| \to 0$.

We then have the following results.

Theorem 2. Let $f \in \mathcal{A}_c$ and $g \in L^1$. Define f * g as in Definition 1. Then (a) $||f * g|| \leq ||f|| ||g||_1$. (b) Let $h \in L^1$. Then $(f * g) * h = f * (g * h) \in \mathcal{A}_c$. (c) For each $z \in \mathbb{R}$, $\tau_z(f * g) = (\tau_z f) * g = (f * \tau_z g)$. (d) For each $f \in \mathcal{A}_c$ define $\Phi_f : L^1 \to \mathcal{A}_c$ by $\Phi_f[g] = f * g$. Then Φ_f is a bounded linear operator and $||\Phi_f|| = ||f||$. For each $g \in L^1$ define $\Psi_g : \mathcal{A}_c \to \mathcal{A}_c$ by $\Psi_g[f] = f * g$. Then Ψ_g is a bounded linear operator and $||\Psi_g|| = ||g||_1$. (e) Define $g_t(x) = g(x/t)/t$ for t > 0. Let $a = \int_{-\infty}^{\infty} g_t(x) \, dx = \int_{-\infty}^{\infty} g$. Then $||f * g_t - af|| \to 0$ as $t \to 0$. (f) $\operatorname{supp}(f * g) \subset \operatorname{cl}(\operatorname{supp}(f) + \operatorname{supp}(g))$.

Other results, such as differentiation and integration of convolutions, are proved in [4].

A generalization of the continuous primitive integral is the regulated primitive integral. This is defined using regulated functions as primitives. A function is regulated if it has a left limit and a right limit at each point. The space of distributions integrable in this sense includes \mathcal{A}_c and all finite, signed Radon measures. Most of the results in this talk extend to this integral. See [5].

References

- [1] G.B. Folland, *Real analysis*, New York, Wiley, 1999.
- [2] F.G. Friedlander and M. Joshi, Introduction to the theory of distributions, Cambridge, Cambridge University Press, 1999.
- [3] E. Talvila, The distributional Denjoy integral, Real Anal. Exchange 33(2008), 51–82.
- [4] E. Talvila, *Convolutions with the continuous primitive integral*, Abstr. Appl. Anal. (2009) Art. ID 307404, 18 pp.
- [5] E. Talvila, *The regulated primitive integral*, Illinois J. Math. (in press).