Lenka Obadalová, Mathematical Institute, Silesian University, CZ-746 01 Opava, Czech Republic. email: lenka.obadalova@math.slu.cz

IRREGULAR RECURRENCE IN COMPACT METRIC SPACES

1 Introduction.

Let (X, d) be a compact metric space, and $\mathcal{C}(X)$ the set of continuous maps $f: X \to X$. By $\omega(x, f)$ we denote the ω -limit set of x which is the set of limit points of the trajectory $\{f^i(x)\}_{i\geq 0}$ of x, where f^i denotes the *i*th iterate of f. We consider sets W(f) of weakly almost periodic points of f, and QW(f) of quasi-weakly almost periodic points of f. They are defined as follows: For $x \in X$ and t > 0, let

$$\Psi_x(f,t) = \liminf_{n \to \infty} \frac{1}{n} \#\{0 \le j < n; d(x, f^j(x)) < t\},\tag{1}$$

$$\Psi_x^*(f,t) = \limsup_{n \to \infty} \frac{1}{n} \# \{ 0 \le j < n; d(x, f^j(x)) < t \}.$$
(2)

Point $x \in W(f)$ if and only if $\Psi_x(f,t) > 0$, for every positive t.

Point $x \in QW(f)$ if and only if $\Psi_x^*(f,t) > 0$, for every positive t.

Obviously, $W(f) \subseteq QW(f)$. The properties of W(f) and QW(f) were studied in the nineties by Z. Zhou et al, see [8] for references. The points in $IR(f) = QW(f) \setminus W(f)$ are *irregularly recurrent points*, i.e. points x such that $\Psi_x^*(f,t) > 0$ for any t > 0, and $\Psi_x(f,t_0) = 0$ for some $t_0 > 0$.

Denote by R(f) the set of *recurrent points*, and by UR(f) the set of *uni*formly recurrent points of f. Thus, $x \in R(f)$ if, for every neighborhood Uof $x, f^j(x) \in U$ for infinitely many $j \in \mathbb{N}$, and $x \in UR(f)$ if, for every neighborhood U of x there is a K > 0 such that every interval [n, n + K],

Mathematical Reviews subject classification: Primary: 37B20, 37D45; Secondary: 37B40

¹⁹

 $n \in \mathbb{N}$, contains a $j \in \mathbb{N}$ with $f^j(x) \in U$. Recall that $x \in R(f)$ if and only if $x \in \omega(x, f)$, and $x \in UR(f)$ if and only if $\omega(x, f)$ is a *minimal set*, i.e., a closed set $\emptyset \neq M \subseteq X$ such that f(M) = M and no proper subset of Mhas this property. The following relations are obvious:

$$UR(f) \subseteq W(f) \subseteq QW(f) \subseteq R(F).$$

2 Relations with topological entropy.

Let (Σ_2, σ) be the shift on the set Σ_2 of sequences of two symbols, 0, 1, equipped with a metric ρ of pointwise convergence, say, $\rho(\{x_i\}_{i\geq 1}, \{y_i\}_{i\geq 1}) = 1/k$ where $k = \min\{i \geq 1; x_i \neq y_i\}$.

LEMMA 1. $IR(\sigma)$ is non-empty, and contains a transitive point.

PROOF. Let

$$k_{1,1}, k_{1,2}, k_{2,1}, k_{2,2}, k_{2,3}, k_{3,1}, \cdots, k_{3,4}, k_{4,1}, \cdots, k_{4,5}, k_{5,1}, \cdots$$

be an increasing sequence of positive integers. Let $\{B_n\}_{n\geq 1}$ be a sequence of all finite blocks of digits 0 and 1. Put $A_0 = 10$, $A_1 = (A_0)^{k_{1,1}} 0^{k_{1,2}} B_1$ and, in general,

$$A_{n+1} = A_n (A_0)^{k_{n+1,1}} (A_1)^{k_{n+1,2}} \cdots (A_n)^{k_{n+1,n+1}} 0^{k_{n+1,n+2}} B_{n+1}.$$
(3)

Denote by |A| the length of a finite block of 0's and 1's, and let

$$a_n = |A_n|, \ b_n = |B_n|, \ c_n = a_n - b_n - k_{n,n+1}, \ n \in \mathbb{N},$$
 (4)

and

$$\lambda_{n,m} = \left| A_n (A_0)^{k_{n+1,1}} (A_1)^{k_{n+1,2}} \cdots (A_m)^{k_{n+1,m+1}} \right|, \ m,n \in \mathbb{N}, m \le n+1.$$
(5)

By induction we can take the numbers $k_{i,j}$ such that

$$k_{n,m+1} = n \cdot \lambda_{n,m}, \ m, n \in \mathbb{N}, m \le n+1.$$
(6)

Let N(A) be the cylinder of all $x \in \Sigma_2$ beginning with a finite block A. Then every $N(B_n)$ is an open set in Σ_2 , and $N(B_n), n \ge 0$, is a base of the topology of Σ_2 . Clearly, $\bigcap_{n=1}^{\infty} N(A_n)$ contains exactly one point; denote it by u.

Since $\sigma^{a_n-b_n}(u) \in N(B_n)$, i.e., since the trajectory of u visits every $N(B_n)$, u is a transitive point of σ . Moreover, $\rho(u, \sigma^j(u)) = 1$, whenever $c_n \leq j < a_n - b_n$. By (6) it follows that $\Psi_u(\sigma, t) = 0$ for every $t \in (0, 1)$. Consequently, $u \notin W(\sigma)$.

It remains to show that $u \in QW(\sigma)$. Let $t \in (0, 1)$. Fix an $n_0 \in \mathbb{N}$ such that $1/a_{n_0} < t$. Then, by (3),

$$\#\left\{j < \lambda_{n,n_0}; \rho(u, \sigma^j(u)) < t\right\} \ge k_{n,n_0}, \ n \ge n_0 - 1,$$

hence, by (5) and (6),

$$\lim_{n \to \infty} \frac{\#\left\{j < \lambda_{n,n_0}; \rho(u, \sigma^j(u)) < t\right\}}{\lambda_{n,n_0}} \ge \lim_{n \to \infty} \frac{k_{n+1,n_0}}{\lambda_{n,n_0}}$$
$$= \lim_{n \to \infty} \frac{k_{n+1,n_0}}{\lambda_{n,n_0-1} + a_{n_0}k_{n+1,n_0}} = \lim_{n \to \infty} \frac{n}{1 + a_{n_0}n} = \frac{1}{a_{n_0}}.$$

Thus, $\Psi_u^*(\sigma, t) = 1/a_{n_0}$ and, by the definition of set $QW(\sigma), u \in QW(\sigma)$. \Box

LEMMA 2. Let f be a continuous map of the interval with positive topological entropy. Then $IR(f) \neq \emptyset$.

PROOF. When h(f) > 0, then f^n is strictly turbulent for some n (there exist two disjoint compact intervals K_0 , K_1 and a positive integer m, such that $f^m(K_0) \cap f^m(K_1) \supset K_0 \cup K_1$, see [1], Theorem IX, 28). This condition is equivalent to existence of a continuous map $g: X \subset I \to \Sigma_2$, where X is of Cantor type, such that $g \circ f^n(x) = \sigma \circ g(x)$ for every $x \in X$, and such that each point in Σ_2 is the image of at most two points in X ([1], Proposition II, 15). From Lemma 1, there is a $u \in IR(\sigma)$. Hence, for every t > 0, $\Psi_u^*(\sigma, t) > 0$, and there is an s > 0 such that $\Psi_u(\sigma, s) = 0$. There are at most two preimages, u_0 and u_1 , of u. Then, by the continuity, $\Psi_{u_i}(f^n, r) = 0$, for some r > 0 and i = 0, 1, and $\Psi_{u_i}^*(f^n, k) > 0$. for at least one $i \in \{0, 1\}$ and every k > 0. Thus, $u_0 \in IR(f^m)$ or $u_1 \in IR(f^m)$ and, by the fact that $IR(f) = IR(f^m)$ for every integer m and every $f \in C(X)$, $IR(f) \neq \emptyset$.

LEMMA 3. For a continuous map f of the interval I with zero topological entropy, the set IR(f) is empty.

PROOF. Assume $x \in IR(f)$. Point x is recurrent, so it belongs to the set $\omega(f) = \bigcup_{x \in X} \omega_f(x)$. Since x cannot be periodic, it belongs to an infinite $\omega_f(y)$. Since h(f) = 0, we have $\omega_f(y) = Q \cup S$, where Q is a minimal set of Cantor type, and S a countable set of isolated points such that $S \cap R(f) = \emptyset([2],$ Theorem 6.2). It follows that x belongs to the minimal set Q. Consequently, x is uniformly recurrent, contrary to $UR(f) \cap IR(f) = \emptyset$.

Moreover, it can be proved that if $f \in \mathcal{C}(X)$ and R(f) denotes the set of recurrent points of f, then $f^{-1}(QW(f)) \cap R(f) \subseteq QW(f)$ and $f^{-1}(W(f)) \cap$

 $R(f) \subseteq W(f).$

From this fact together with lemmas 1, 2 and 3, we have the following result:

THEOREM 1. For a continuous map f of the interval, the conditions h(f) > 0and $IR(f) \neq \emptyset$ are equivalent.

References

- L. S. Block, W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, Berlin Heidelberg, 1992
- [2] A. M. Bruckner, J. A. Smítal, A characterization of ω-limit sets of maps of the interval with zero topological entropy, Ergod. Th. & Dynam. Sys., 13 (1993), 7–19.
- [3] L. Obadalová, J. Smítal, Distributional chaos and irregular recurrence, Nonlin Anal A - Theor Meth Appl, 72 (2010), 2190 - 2194.
- [4] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps, Chaos, Solitons and Fractals 26 (2005), 581 – 589.
- [5] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps II, Chaos, Solitons and Fractals, 28 (2006), 1356 - 1365.
- [6] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps III, Chaos, Solitons and Fractals, 37 (2008), 517 – 524.
- [7] Z. Zhou, Weakly almost periodic point and measure centre, Science in China (Ser. A), 36 (1993), 142 – 153.
- [8] Z. Zhou, L. Feng, Twelve open problems on the exact value of the Hausdorff measure and on topological entropy, Nonlinearity, 17 (2004), 493– 502.