IRREGULAR RECURRENCE IN COMPACT METRIC SPACES

1 Introduction.

Let (X, d) be a compact metric space, and $\mathcal{C}(X)$ the set of continuous maps $f: X \rightarrow X$. By $\omega(x, f)$ we denote the ω-limit set of x which is the set of limit points of the trajectory $\left\{f^{i}(x)\right\}_{i \geq 0}$ of x, where f^{i} denotes the i th iterate of f. We consider sets $W(f)$ of weakly almost periodic points of f, and $Q W(f)$ of quasi-weakly almost periodic points of f. They are defined as follows: For $x \in X$ and $t>0$, let

$$
\begin{align*}
\Psi_{x}(f, t) & =\liminf _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq j<n ; d\left(x, f^{j}(x)\right)<t\right\} \tag{1}\\
\Psi_{x}^{*}(f, t) & =\limsup _{n \rightarrow \infty} \frac{1}{n} \#\left\{0 \leq j<n ; d\left(x, f^{j}(x)\right)<t\right\} \tag{2}
\end{align*}
$$

Point $x \in W(f)$ if and only if $\Psi_{x}(f, t)>0$, for every positive t.
Point $x \in Q W(f)$ if and only if $\Psi_{x}^{*}(f, t)>0$, for every positive t.
Obviously, $W(f) \subseteq Q W(f)$. The properties of $W(f)$ and $Q W(f)$ were studied in the nineties by Z. Zhou et al, see [8] for references. The points in $I R(f)=Q W(f) \backslash W(f)$ are irregularly recurrent points, i.e. points x such that $\Psi_{x}^{*}(f, t)>0$ for any $t>0$, and $\Psi_{x}\left(f, t_{0}\right)=0$ for some $t_{0}>0$.

Denote by $R(f)$ the set of recurrent points, and by $U R(f)$ the set of uniformly recurrent points of f. Thus, $x \in R(f)$ if, for every neighborhood U of $x, f^{j}(x) \in U$ for infinitely many $j \in \mathbb{N}$, and $x \in U R(f)$ if, for every neighborhood U of x there is a $K>0$ such that every interval $[n, n+K]$,

Mathematical Reviews subject classification: Primary: 37B20, 37D45; Secondary: 37B40
$n \in \mathbb{N}$, contains a $j \in \mathbb{N}$ with $f^{j}(x) \in U$. Recall that $x \in R(f)$ if and only if $x \in \omega(x, f)$, and $x \in U R(f)$ if and only if $\omega(x, f)$ is a minimal set, i.e., a closed set $\emptyset \neq M \subseteq X$ such that $f(M)=M$ and no proper subset of M hasthis property. The following relations are obvious:

$$
U R(f) \subseteq W(f) \subseteq Q W(f) \subseteq R(F)
$$

2 Relations with topological entropy.

Let $\left(\Sigma_{2}, \sigma\right)$ be the shift on the set Σ_{2} of sequences of two symbols, 0,1 , equipped with a metric ρ of pointwise convergence, say, $\rho\left(\left\{x_{i}\right\}_{i \geq 1},\left\{y_{i}\right\}_{i \geq 1}\right)=$ $1 / k$ where $k=\min \left\{i \geq 1 ; x_{i} \neq y_{i}\right\}$.
Lemma 1. $I R(\sigma)$ is non-empty, and contains a transitive point.
Proof. Let

$$
k_{1,1}, k_{1,2}, k_{2,1}, k_{2,2}, k_{2,3}, k_{3,1}, \cdots, k_{3,4}, k_{4,1}, \cdots, k_{4,5}, k_{5,1}, \cdots
$$

be an increasing sequence of positive integers. Let $\left\{B_{n}\right\}_{n \geq 1}$ be a sequence of all finite blocks of digits 0 and 1 . Put $A_{0}=10, A_{1}=\left(A_{0}\right)^{k_{1,1}} 0^{k_{1,2}} B_{1}$ and, in general,

$$
\begin{equation*}
A_{n+1}=A_{n}\left(A_{0}\right)^{k_{n+1,1}}\left(A_{1}\right)^{k_{n+1,2}} \cdots\left(A_{n}\right)^{k_{n+1, n+1}} 0^{k_{n+1, n+2}} B_{n+1} \tag{3}
\end{equation*}
$$

Denote by $|A|$ the length of a finite block of 0 's and 1's, and let

$$
\begin{equation*}
a_{n}=\left|A_{n}\right|, b_{n}=\left|B_{n}\right|, c_{n}=a_{n}-b_{n}-k_{n, n+1}, n \in \mathbb{N} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{n, m}=\left|A_{n}\left(A_{0}\right)^{k_{n+1,1}}\left(A_{1}\right)^{k_{n+1,2}} \cdots\left(A_{m}\right)^{k_{n+1, m+1}}\right|, m, n \in \mathbb{N}, m \leq n+1 \tag{5}
\end{equation*}
$$

By induction we can take the numbers $k_{i, j}$ such that

$$
\begin{equation*}
k_{n, m+1}=n \cdot \lambda_{n, m}, m, n \in \mathbb{N}, m \leq n+1 \tag{6}
\end{equation*}
$$

Let $N(A)$ be the cylinder of all $x \in \Sigma_{2}$ beginning with a finite block A. Then every $N\left(B_{n}\right)$ is an open set in Σ_{2}, and $N\left(B_{n}\right), n \geq 0$, is a base of the topology of Σ_{2}. Clearly, $\bigcap_{n=1}^{\infty} N\left(A_{n}\right)$ contains exactly one point; denote it by u.

Since $\sigma^{a_{n}-b_{n}}(u) \in N\left(B_{n}\right)$, i.e., since the trajectory of u visits every $N\left(B_{n}\right)$, u is a transitive point of σ. Moreover, $\rho\left(u, \sigma^{j}(u)\right)=1$, whenever $c_{n} \leq j<$ $a_{n}-b_{n}$. By (6) it follows that $\Psi_{u}(\sigma, t)=0$ for every $t \in(0,1)$. Consequently, $u \notin W(\sigma)$.

It remains to show that $u \in Q W(\sigma)$. Let $t \in(0,1)$. Fix an $n_{0} \in \mathbb{N}$ such that $1 / a_{n_{0}}<t$. Then, by (3),

$$
\#\left\{j<\lambda_{n, n_{0}} ; \rho\left(u, \sigma^{j}(u)\right)<t\right\} \geq k_{n, n_{0}}, n \geq n_{0}-1
$$

hence, by (5) and (6),

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\#\left\{j<\lambda_{n, n_{0}} ; \rho\left(u, \sigma^{j}(u)\right)<t\right\}}{\lambda_{n, n_{0}}} \geq \lim _{n \rightarrow \infty} \frac{k_{n+1, n_{0}}}{\lambda_{n, n_{0}}} \\
= & \lim _{n \rightarrow \infty} \frac{k_{n+1, n_{0}}}{\lambda_{n, n_{0}-1}+a_{n_{0}} k_{n+1, n_{0}}}=\lim _{n \rightarrow \infty} \frac{n}{1+a_{n_{0}} n}=\frac{1}{a_{n_{0}}} .
\end{aligned}
$$

Thus, $\Psi_{u}^{*}(\sigma, t)=1 / a_{n_{0}}$ and, by the definition of set $Q W(\sigma), u \in Q W(\sigma)$.
Lemma 2. Let f be a continuous map of the interval with positive topological entropy. Then $\operatorname{IR}(f) \neq \emptyset$.

Proof. When $h(f)>0$, then f^{n} is strictly turbulent for some n (there exist two disjoint compact intervals K_{0}, K_{1} and a positive integer m, such that $f^{m}\left(K_{0}\right) \cap f^{m}\left(K_{1}\right) \supset K_{0} \cup K_{1}$, see [1], Theorem IX, 28). This condition is equivalent to existence of a continuous map $g: X \subset I \rightarrow \Sigma_{2}$, where X is of Cantor type, such that $g \circ f^{n}(x)=\sigma \circ g(x)$ for every $x \in X$, and such that each point in Σ_{2} is the image of at most two points in X ([1], Proposition II, 15). From Lemma 1, there is a $u \in I R(\sigma)$. Hence, for every $t>0, \Psi_{u}^{*}(\sigma, t)>0$, and there is an $s>0$ such that $\Psi_{u}(\sigma, s)=0$. There are at most two preimages, u_{0} and u_{1}, of u. Then, by the continuity, $\Psi_{u_{i}}\left(f^{n}, r\right)=0$, for some $r>0$ and $i=0,1$, and $\Psi_{u_{i}}^{*}\left(f^{n}, k\right)>0$. for at least one $i \in\{0,1\}$ and every $k>0$. Thus, $u_{0} \in I R\left(f^{m}\right)$ or $u_{1} \in I R\left(f^{m}\right)$ and, by the fact that $I R(f)=I R\left(f^{m}\right)$ for every integer m and every $f \in \mathcal{C}(X), \operatorname{IR}(f) \neq \emptyset$.

Lemma 3. For a continuous map f of the interval I with zero topological entropy, the set $I R(f)$ is empty.

Proof. Assume $x \in I R(f)$. Point x is recurrent, so it belongs to the set $\omega(f)=\bigcup_{x \in X} \omega_{f}(x)$. Since x cannot be periodic, it belongs to an infinite $\omega_{f}(y)$. Since $h(f)=0$, we have $\omega_{f}(y)=Q \cup S$, where Q is a minimal set of Cantor type, and S a countable set of isolated points such that $S \cap R(f)=\emptyset([2]$, Theorem 6.2). It follows that x belongs to the minimal set Q. Consequently, x is uniformly recurrent, contrary to $U R(f) \cap I R(f)=\emptyset$.

Moreover, it can be proved that if $f \in \mathcal{C}(X)$ and $R(f)$ denotes the set of recurrent points of f, then $f^{-1}(Q W(f)) \cap R(f) \subseteq Q W(f)$ and $f^{-1}(W(f)) \cap$
$R(f) \subseteq W(f)$.
From this fact together with lemmas 1, 2 and 3 , we have the following result:

Theorem 1. For a continuous map f of the interval, the conditions $h(f)>0$ and $I R(f) \neq \emptyset$ are equivalent.

References

[1] L. S. Block, W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, Berlin Heidelberg, 1992
[2] A. M. Bruckner, J. A. Smítal, A characterization of ω-limit sets of maps of the interval with zero topological entropy, Ergod. Th. \& Dynam. Sys., 13 (1993), 7-19.
[3] L. Obadalová, J. Smítal, Distributional chaos and irregular recurrence, Nonlin Anal A - Theor Meth Appl, 72 (2010), 2190-2194.
[4] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps, Chaos, Solitons and Fractals 26 (2005), 581 - 589.
[5] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps II, Chaos, Solitons and Fractals, 28 (2006), 1356 - 1365.
[6] L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps III, Chaos, Solitons and Fractals, 37 (2008), 517 - 524.
[7] Z. Zhou, Weakly almost periodic point and measure centre, Science in China (Ser. A), 36 (1993), $142-153$.
[8] Z. Zhou, L. Feng, Twelve open problems on the exact value of the Hausdorff measure and on topological entropy, Nonlinearity, 17 (2004), 493502.

