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FRACTIONAL ITERATION OF SERIES
AND TRANSSERIES

Definition 1. Given functions T : X → X and Φ: R ×X → X, we say that
Φ is a real iteration group for T iff

Φ(s+ t, x) = Φ
(
s,Φ(t, x)

)
, (1)

Φ(0, x) = x, (2)

Φ(1, x) = T (x), (3)

for all s, t ∈ R and x ∈ X.

Here, we investigate this in the setting of transseries. An example follows,
essentially due to Calyey in 1860 [3]. Consider a series of the form

T (x) = x

1 +

∞∑
j=1

cjx
−j

 (4)

= x+

∞∑
j=1

cjx
−j+1 = x+ c1 + c2x

−1 + c3x
−2 + · · ·

Such a series admits an iteration group of the same form. That is,

Φ(s, x) = x

1 +

∞∑
j=1

αj(s)x
−j

 . (5)
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In fact, αj(s) is scj + {polynomial in s, c1, c2, . . . , cj−1 with rational coeffi-
cients, of degree j − 1 in s}. The first few terms:

Φ(s, x) = x+ sc1 + sc2x
−1 +

(
sc3 +

s(1− s)
2

c1c2

)
x−2

+

(
sc4 +

s(1− s)
2

(2c1c3 + c22) +
s(1− s)(1− 2s)

6
c21c2

)
x−3 + · · · .

Theorem 2. Let T (x) be the power series (4). Define αj : R→ R recursively
by

α1(s) = sc1,

αj(s) = s

cj − ∫ 1

0

∑
j1+j2=j

(−j1 + 1)αj1(u)α′j2(0) du


+

∫ s

0

∑
j1+j2=j

(−j1 + 1)αj1(u)α′j2(0) du.

Then the series Φ defined formally by (5) is a real iteration group for T .

A second example is a “transseries”.

T (x) = x

 ∞∑
k=0

∞∑
j=0

cj,kx
−je−kx

 , c0,0 = 1. (6)

The set

B = { (j, k) : k ≥ 0, j ≥ 0, (j, k) 6= (0, 0) } (7)

is a semigroup under addition, well ordered by asymptotic comparison (as
x→∞).

Theorem 3. Let B be as in (7). Then the transseries (6) admits a real
iteration group supported by the same set

{
x1−je−kx : j, k ≥ 0

}
.

Another simple example shows that real iteration group of that type need
not always exist. Let B ⊆ Z3 be

B = { (j, 0, 0) : j ≥ 1 } ∪ { (j, k, 0) : k ≥ 1 } ∪ { (j, k, l) : l ≥ 1 } . (8)

Then
{
x−je−kxe−lx

2

: (j, k, l) ∈ B
}

is a semigroup, but not well ordered.
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Theorem 4. Let B′ be a well ordered subset of (8). The transseries T (x) =

x(1 + x−1 + e−x
2

) admits no real iteration group of the form

Φ(s, x) = x

1 +
∑

(j,k,l)∈B′

αjkl(s)x
−je−kxe−lx

2

 .

Another approach involves Abel’s Equation. We write P for the set of
(well-based) large positive transseries, and expoT for the exponentiality of T .
For both, see [7].

Theorem 5. Let T ∈ P with expoT = 0. Then there is V ∈ P such that:
(i) If T > x, then V ◦T ◦V [−1] = x+1; (ii) If T < x, then V ◦T ◦V [−1] = x−1.

Corollary 6. Let T ∈ P with expoT = 0. Then there exists real iteration
group Φ(s, x) for T .
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