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PROBABLILITY MEASURES ON
SHRINKING NEIGHBORHOODS

Abstract

In this paper we look at evenly distributed probability measures on
tubular neighborhoods around certain sets, and consider the converged
measure once the neighborhood is shrunk around the set. For fractals
with the Open Set Condition, the measure converges to an evenly dis-
tributed probability measure that matches the Hausdorff dimension of
the set. However, for targets where the length of the concentric circles is
infinite, the measure on the shrinking neighborhood converges to a point
measure located only on the center of the target. We will consider other
situations where the converged measure on the shrunken neighborhood
omits part of the set. We will also look at connections to Minkowski
Content and other measures that take into account curvature or other
characteristics of the set.

1 Introduction.

We consider distance tubes around objects, which we define now:

Definition 1.1. We say x is in a distance tube of δ > 0 of an object M in
Rn if dist(x,M) < δ where dist(x,M) ≡ inf{‖x−m‖|m ∈M}.

Over the years, there have been many interesting results concerning tubes
around objects. For example, in 1939, Hermann Weyl gave a formula for
the volume of a tube around a m-dimensional submanifold in n-dimensional
space. This formula was a polynomial which took into account the thickness
of the tube and the curvature of the object. For this formula to work, the
tube needed to be small enough so that it could follow the curvature of the
submanifold and not have any kinks or corners. Also, Weyl did not quite
consider the distance tubes we are considering here, in that the tube had to
come from the normal to the submanifold. As an example, consider a finite
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length line in R2. The distance tube we are considering in this paper has two
”nubs” around the endpoints of the line, whereas Weyl’s tubes do not. For a
detailed account and proof of Weyl’s formula, an excellent reference is [5].

More recently, Michel Lapidus and Erin Pearse gave formulas for the vol-
umes of tubes around self-similar tilings and fractals, such as the Koch Curve
(see [9] p.65-67). Their results can be found in [8].

For our purposes, we are not interested in the volume of such tubes, but
rather where the volume collects as δ → 0 in the definition of the distance
tube. That is, we set up a probability measure on a distance tube around a
set M in Rn as follows:

Definition 1.2. Let

PMδ
(B) =

∫
B
χMδ

(x)dx∫
Rn χMδ

(x)dx

where B is a Borel set, Mδ is the δ-tube around M , and χMδ
is the charac-

teristic function on Mδ.

This type of measure originally stemmed from the study of Gibbs measures
and simulated annealing. For more information on these Gibbs measures and
their applications, consult [1] or [6]. In [11] and [12], we studied the weak con-
vergence of a sequence of Gibbs measures as λ→∞, where weak convergence
is as follows:

Definition 1.3. A sequence of probability measures {Pn}n converges weakly
to a probability measure P , denoted Pn ⇀ P , if∫

φdPn →
∫
φdP

for all bounded continuous real-valued functions φ.

2 Results.

2.1 Rectifiable curves.

For rectifiable curves, it can be proved that the probability measure converges
weakly to a probability distribution on the space when δ → 0. This includes
spaces that have a finite number of corners and cusps, such as semialgebraic
and subanalytic sets. This fact comes from a theorem in [4].
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2.2 Fractals.

Fractals often have an infinite number of corners. However, we find that the
probability measure defined above will distribute evenly for self-similar fractals
with Hutchinson’s Open Set Condition, which states that the fractal can be
separated into self-similar parts by open sets, where the Hausdorff measure of
the total intersection between the open sets can be bounded by any ε > 0.
See [7], [2], or [11] for more specfics. Examples of these types of fractals in
R2 include the Koch curve and the 1

4 -Cantor set crossed with itself (see [10]
p.32-33).

Therefore, we find:

Theorem 2.1. For a self-similar fractal F Hausdorff dimension s (denoted
Hs), with Hutchinson’s Open Set Condition, PFδ(B) converges weakly to

Hs F

Hs(F )
(B)

as δ → 0, where (Hs F )(B) = Hs(F ∩B).

This result can be extended for fractals that do not have Hutchinson’s Open
Set Condition (overlapping or generic fractals, see [9]). A current theorem
dealing with such fractals on the real line follows.

Theorem 2.2. Let Ti : R → R, i = 1, . . . , N , N ≥ 2, be linear similitudes
given by Tix = τix where τi 6= 0 and

∑N
i=1 |τi| < 1. Then for LN almost all

(c1, . . . , cN ) ∈ RN the non-empty compact invariant set K,

K =

N⋃
i=1

(Ti + ci)(K).

Then
PKδ(B)

converges weakly to
Hs K

Hs(K)
(B)

as δ → 0.

In the future I would like to extend the above theorem to include overlap-
ping fractals in arbitrary dimensions and more general types of fractals, such
as Julia sets and random fractals. I would also like to explore more compli-
cated targets and how the measures would distribute. Finally, I would like
to look at Gibbs measures weighted by curvature, connected to the curvature
measure described by Federer in [3].
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2.3 Targets.

Although the probability measure distributes evenly over rectifiable curves
and fractals, we can construct spaces such that the measure will not dis-
tribute evenly. To this end, we study “targets,” that is, concentric circles with
decreasing radii. When the total sum of the length of the circles have infinite
length, the measure will concentrate on certain spots. By having multiple tar-
gets, we can distribute the measure in different ways. To that end, we arrive
at the following three theorems, taken from [11]:

Theorem 2.3. For a target T made up of concentric circles of decreasing
radii an for n ∈ N, an ∈ R, and

∑∞
n=1 an =∞, PTδ(B) converges weakly to a

point mass of probability 1 located at the center of T .

Theorem 2.4. For targets T−, T+ some distance apart from each other, made
up of concentric circles of radii 1

n for T− and concentric circles of radii 1
2n for

T+, for n ∈ N, and T = T− ∪ T+, PTδ(B) converges weakly to a point mass of
probability 2/3 located at the center of T−, and a point mass of probability 1/3
located at the center of T+.

Theorem 2.5. For targets T−, T+ some distance apart from each other, made
up of concentric circles of radii 2

n for T− and concentric circles of radii 1 + 1
en

for T+, for n ∈ N, and T = T− ∪ T+, PTδ(B) converges weakly to a point
mass of probability 1/2 located at the center of T−, and a distribution of total
probability 1/2 located around the center circle of T+.

Therefore, by balancing out the measures of a target centered at a point
and a target centered at a circle, the resulting measure divides its time between
a zero dimensional object and a one dimensional object. For future work and
a possible undergraduate research project, I would like to construct spaces
where the measure divides its time between spaces of more dimension, for
example, a point and a sphere, or a point, circle and sphere.

2.4 Future work: other measures.

For future work, I would like to focus on curvature measures, similar to those
described by Federer in [3]. This measure would record infinite curvature at
any corner or cusp, and therefore would focus the probability measure on those
points and disappear whenever the set M was merely rounded or flat. I would
also like to consider the relationship between PMδ

(B) and Minkowski Content,
defined in [4] as

lim
δ→0+

Ln{x : dist(x,M) < δ}
α(n−m)δn−m

,
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where L is Lebesgue measure, n is the dimension of the ambient space, m is
the dimension of the set M , and α(n−m) is the volume of the unit (n−m)-
dimensional sphere. One can see that this has many similarities to PMδ

(B),
but also some key differences. In Federer’s definition, m needed to be an in-
teger, therefore fractals such as the Cantor set could not be discussed. Also,
Minkowski Content is not a probability measure, nor is it always even a mea-
sure. However, the reason why the centers of the targets in the last section
end up with the entire measure is because these points have higher Minkowski
Content then the points on the outside circles.
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[6] S. Kirkpatrick, C. D. Gelatt, and M.P. Vecchi, Optimization by simulated
annealing, Science 220 (1983), 671–680.

[7] J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30
(1981), 713–747.

[8] M. L. Lapidus and E. P. J. Pearse, Tube formulas for self-similar fractals,
Proc. Sympos. Pure Math, 77 (2008).

[9] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cam-
bridge Univ. Press, Cambridge, 1995.

[10] F. Morgan, Geometric measure theory, Academic Press, San Diego, 2000.

[11] E. Samansky Convergence of Gibbs Measures and the Behavior of Shrink-
ing Tubular Neighborhoods of Fractals and Algebraic Sets, in preparation.



32 Eric Samansky

[12] E. Samansky, The Measure and Behavior of Shrinking Tubular Neighbor-
hoods on Overlapping Fractals, in preparation.


