US-ITASE 2

 

  • What is ITASE-2?
  • Route
  • St. Olaf Radar Program
  • Photos and Maps
  • Science and Results
  • Links and Contact

What is US-ITASE 2?

The US-ITASE 2 program is a platform for multiple scientific research projects that focus on spatial variations across the East Antarctic Ice Sheet between Taylor Dome and the South Pole.  The project is part of the US contribution to the International Polar Year.

Links:

http://ipy.arcticportal.org/

(IPY Website)

http://www.nsf.gov/od/opp/ipy/ipy_awards_0607.jsp

(List of NSF funded IPY Projects)

 

The primary goal of the 2 field expeditions is to determine the spatial variability of the last 200 years across the ice sheet and to compare this record with the findings of the previous US-ITASE program in West Antarctica.  In cooperation with the rest of ITASE, US-ITASE aims to contribute to how we understand ocean-ice sheet climate interactions, climate variabililty, and human impact on climate over the last 200 years.  The US-ITASE heavy-traverse platform offers capabilities similar to a large ocean-going research vessel with logistic and scientific support for numerous researchers while traveling long distances (1000+ km) with limited limited intermediate support.

(From the US-ITASE Executive Summary submitted to NSF):

In its entirety, ITASE incorporates a wide range of general scientific objectives. Those which are specific to US ITASE address the following questions: 

  1. What is the current rate of change in mass balance over West Antarctica? 
  2. What is the influence of major atmospheric circulation systems (e.g., ENSO) and oceanic circulation on the moisture flux over West Antarctica? 
  3. How does climate (eg., temperature, accumulation rate, atmospheric circulation) vary over West Antarctica on seasonal, interannual, decadal and centennial scales, and what are the controls on this variability? 
  4. What is the frequency, magnitude and effect (local to global) of any extreme climate events recorded in West Antarctica? 
  5. What is the impact of anthropogenic activity (e.g., ozone depletion, pollutants) on the climate and atmospheric chemistry of West Antarctica? 
  6. How much has biogeochemical cycling of S, N and C, as recorded in West Antarctica, varied over the last 200+ years? 

US ITASE provides an important spatial perspective for the shared research goals of a variety of research programs funded by the NSF, NASA and NOAA. Notably, questions 1-4 parallel closely themes identified by NSF's WAIS (West Antarctic Ice Sheet) intiative. It is expected that these overlaps of scientific purposes will make possible an efficient utilization of logistic resources in the execution of these linked research programs.

Complete US-ITASE Science & Implementation Plan (from the University of Maine)
Map of US-ITASE 2 route

US-ITASE 2 Route

Over two years we will traversed from Taylor Dome to South Pole along a corridor behind the Trans-Antarctic Mountains, passing through the upper reaches of the major East Antarctic Ice Sheet glaciers that drain into the Ross Ice Shelf. The actual route was be modified as we encounted crevasses that were not detected by preliminary satellite image analysis, or discovered features of scientific interest. We also colleted radar data and ice cores from a number of short (100-200 km) traverses oriented perpendicular to the main traverse route. These profiles provided the opportunity to collect data along ice flow lines.


Click on the map for a larger image.

The St. Olaf College contribution to the US-ITASE 2 program is a deep-penetrating 3 MHz radio echo-sounding system that can measure the bedrock surface beneath the ice as well as internal layers that have unique electrical properties.  Total ice thickness data is useful to researchers who develop ice-flow models of the ice sheet.  The immense size of the ice sheet makes it difficult to obtain high-accuracy thickness measurements over the entire continent.  The long distance traverses of the US-ITASE program make it an ideal platform for ground-based radar measurements.

Internal ice reflections are usually related to deposition of volcanic debris (acids or ash) or dust layers.  These layers give researchers a window into the accumulation and flow history of the ice sheet.  Changes in the layer thickness along the traverse routes may be attributed to changes in snow accumulation due to climate or geographic changes (crossing a drainage divide, for example).  Changes in the ice flow velocity due to bumps in the bedrock or changes in the bedrock character cause the ice to thicken or thin as the ice decelerates or accelerates.

We surveyed a number of radar profiles recorded at Taylor Dome by David Morse and Howard Conway from the Univ. of Washington prior to the Taylor Dome Ice Core project in the early 1990's. These profiles will help us establish a baseline for the reflectivity of bedrock frozen to the ice sheet and also provide dates for internal ice layers. Once the traverse departed Taylor Dome we recorded radar profiles along the entire traverse route to establish dating control of the internal stratigraphy that can be traced back to the Taylor Dome core. We collected radar profiles on a number of side-traverses that will parallel ice flow in order to examine the influence of basal conditions on flow dynamics. In addition we hope to gain access to a number of the ridges separating the large outlet glaciers that drain the East Antarctic Ice Sheet through the Transantarctic Mountains to examine the stability of ice flow into the glaciers. Finally we will visit a number of interesting glaciological features along the route including Titan Dome, large zones of wind erosion, and perhaps the edges of the Mega-dunes region. Our 3 MHz radar system has been upgraded to collect data closer to the ice surface so we hope to correlate our internal ice stratigraphy with that collected by Steve Arcone's 400 MHz shallow radar system. Upon reaching the South Pole in Year 2 of this project we will connect our radar stratigraphy to the data collected in West Antarctica during the first phase of US-ITASE (1999-2003) that also finished at South Pole.

Map of the traverse corridor for US-ITASE 2 starting at Taylor Dome and ending at South Pole. Click the map for a full-size image.

Results, Publications & Data

Results of the project will be posted here soon after the first field season. As we publish our findings we will post relevant data sets at the

National Snow & Ice Data Center.

US-ITASE 2006:

The traverse route started at Taylor Dome near the Transantarctic Mts. just west of McMurdo Station. The route headed inland and then turned south 130 km from Taylor Dome. We continued south into the Byrd Glacier drainage, collecting ice cores at four sites as well as over 500 km of deep (3 MHz) and shallow (400 MHz) radar data. Logistical problems limited our travel distance this year, but we still made good progress and expect to make it to South Pole in 2007.

-Route map

JPG

 

PDF

 

-Deep radar profile (3 MHz) from upper Skelton Gl. drainage, 50 km west of Taylor Dome. Processing includes bandpass filter, NMO, and TK migration.

JPG

 

-Comparison of 400 MHz crevasse-detecting radar results with shallow reflectors seen in low-gain channel of 3 MHz data collected in upper Byrd Gl. drainage.

PDF

 

US-ITASE 2007:

Map of planned route:

JPG

 

PDF

 

Instrumentation & Methods

We operate a 3 MHz radio echo-sounding system to transmit and receive radio waves through as much as 3.5 km of ice.  This signal frequency translates to a wavelength of about 56 m in ice.  The transmitter (made by the Kentech) emits pulses at frequency of up to 2 kHz.  The pulses are emitted by our transmitter antenna, a 40 m dipole dragged along the snow surface.  135 m in front of the transmitter is an identical dipole antenna that receives the signal.  The signal is amplified and passed on to an oscilloscope board mounted directly on a field-ready PC computer.  The scope board identifies the incoming signal, digitizes it, and sends it to the computer to be stored on the hard drive.  The scope board is extremely fast, sampling the signal at up to 200 million samples/second.  Each sample of the signal is digitized to a 14-bit value and stored on the computer along with the recording parameters and a precise time-stamp.

We use the scope board's speed to stack the incoming signal to remove much of the environmental radio noise that hides our reflected signal.  We stack the data in the field by averaging about a thousand of the transmitter pulses and their resultant echoes from the bedrock and internal layers.  The traverse train travels at about 12 km/hr so we generally stack 1200-1500 pulses in order to record a trace every few meters.  Stacking and the fast scope board allow us record a dense profile of traces while eliminating much of the noise that would make the data difficult to process and interpret.

More about basic radio echo-sounding techniques

Field Logistics

Our radar system operates primarily during the traverses between ice coring sites.  The system and operator are towed as the very last sleds in the traverse train to eliminate radio noise from other instrumentation or reflections from the metal sleds and equipment.  The receiver and operator are housed in a small shelter built on a wooden Komatik sled.  The shelter protects the computer and operator from wind, cold, and snow.  Power for the receiver can be derived from a solar-powered battery system, or a small gasoline-powered generator mounted on the back of the sled.  Batteries to power the transmitter are charged by the solar panels or the generator.  The shelter is also equipped with a GPS receiver to geolocate the radar data.  A survival bag is strapped to the front of the shelter in case of emergency.

The transmitter is towed 135 m or more behind the receiver sled.  The transmitter and its battery sit in a small sled and are protected from the elements by the sled's nylon cover.  The antennas for the transmitter and receiver are housed in strong hydraulic hoses and tied to the tow ropes to keep the antennas as straight and parallel as possible.

Picture of the receiver sled & transmitter sled used in US-ITASE 1
Picture of the interior of the receiver shelter used in US-ITASE

 

 

US-ITASE 2 corridor

Over two years we traversed from Taylor Dome to South Pole along a corridor behind the Trans-Antarctic Mountains, passing through the upper reaches of the major East Antarctic Ice Sheet glaciers that drain into the Ross Ice Shelf. The actual route was modified as we encountered crevasses that were not detected by preliminary satellite image analysis, or discovered features of scientific interest. We collected radar data and ice cores from a number of short (100-200 km) traverses oriented perpendicular to the main traverse route. These profiles provided the opportunity to collect data along ice flow lines.

Click on the map for a larger image

 

2006-07 Field season

The traverse route started at Taylor Dome near the Transantarctic Mts. just west of McMurdo Station. The route headed inland and then turned south 130 km from Taylor Dome. We continued south into the Byrd Glacier drainage, collecting ice cores at four sites as well as over 500 km of deep (3 MHz) and shallow (400 MHz) radar data.

Click on the map for a larger image or open full-resolution

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2007-08 Field season

We started the traverse at site 06-4 in the upper Byrd Glacier drainage basin where we left the tractors and sleds at the end of the 2006-07 season. The traverse left the winter-over site on Nov. 15, 2007 and traveled 1,200 km to the South Pole where we arrived on Dec. 24, 2007. Ice cores were collected at four sites, including Titan Dome. We collected nearly 1,400 km of 3 MHz radar data along the route and local profiles at the ice core sites. We found ice over 3 km thick in places, very complicated ice stratigraphy, and evidence of a few subglacial lakes.

Click on the map for a larger image

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As an experiment of opportunity designed to image deep ice and take advantage of the traverse platform, the CEGSIC radar produced several notable results.  The map figure at the right shows the traverse route passing just downflow of the “Megadunes,” a region of wind-produced structures near Site 07-1, so-named because of their regular dune-like pattern first recognized in satellite imagery.  The precise mechanism of their formation and continued maintenance is a subject of considerable interest to glaciologists and has a bearing on the mass balance of the ice sheet. 

The figure below shows the CEGSIC radar profile for the 60 kilometer segment just beyond site 07-1.  Unlike ice in most of the traverse, the internal layer stratigraphy in this section is highly disturbed.  In particular, the section from kilometer 270 to 285 shows a series of dune-like features buried beneath more than a kilometer of ice.  How were these structures formed and how are they preserved?  Simple burial of megadunes originating upstream can not produce them.  Our paper with first author Steve Arcone in the Journal of Glaciology presents a model that explains this interesting occurrence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map figure at the right again shows the US-ITASE traverse route, this time with the background colors representing ice sheet velocity determined by mass conservation.  The highest velocities (red colors) depict ice funneling through the Transantarctic Mountains in valley glaciers, like the very large Byrd Glacier near the center of the image.  Notice that the Byrd glacier has three “jets” of higher velocity feeding the main trunk that extend westward back into the ice sheet. 

Colors along the traverse show the power returned by the CEGSIC radar from the basal reflection, warmer colors indicating higher reflectivity.  Notice that there is a correspondence between areas with higher reflectivity and the jets with higher velocity.  Water at the basal interface is the primary mechanism for producing high radar reflectivity.  Water also produces higher ice velocities due to enhanced sliding. The correspondence between areas of thawed bed and higher velocity is expected based on glaciological theory and is shown here based on two independent remotely-sensed data sets.

 

 

 

 

 

 

The figure at the right is made from the portion of the radar profile crossing the northern tributary of the Byrd Glacier near 80 degrees south latitude.  It shows tracings of the internal layers and colors along the bed indicate basal reflectivity.  The color band across the bottom of the figure shows the ice velocity, again illustrating the close correspondence between thawed basal conditions and high velocities. 

This correspondence is expected based on glaciological theory, so it is no surprise. But this set of observations from two independent remotely sensed geophysical data sets extends the range of field observations to the interior of East Antarctica and confirms the importance of basal lubrication on modulating the ice dynamics of the largest ice sheet on the planet.

These results have been published in

The Cryosphere.

 

Related Sites

Itase Log at University of Maine

Itase Website at University of Maine

Contact Information

Direct questions about CEGSIC & St. Olaf low-frequency radar program to:

Dr. Robert W. Jacobel, CEGSIC Director & US-ITASE Principal Investigator

email: jacobel@stolaf.edu

 

Office: (507) 786-3124
Fax: (507) 786-3968

Direct questions about this website or US-ITASE radar data to:

Brian C. Welch, Postdoctoral Researcher (2000-2008)

email:hclewb@gmail.com

CEGSIC Mailing Address:

Center for Geophysical Studies of Ice & Climate
Department of Physics
St. Olaf College
1520 St. Olaf Avenue
Northfield, MN 55057

St. Olaf College undergraduate researchers:

Ian Campbell - Data acquisition software: 2006-07
Andrea Mulhausen - Data processing & interpretation: 2007
Martina King - Data processing & interpretation: 2007
Bern Youngblood - Data processing & interpretation: 2007