Tentative Syllabus for Math 126C - Calculus II - Spring '05

Text: Ostebee, Zorn: Calculus From Graphical, Numerical & Symbolic Points of View , 2nd Ed., Vol. II 

Final Review Topics          Final Review Answers

Review for Test 1      Answers for Review 1

Review for Test 2       Answers for Review 2

Review for Test 3        Answers for Review 3

 

Course Information    Calculus I Topic List     Maple TA      Clinic Schedule      Calculator Info  TI-89
Date Text Topic Assignment 
F. 7     What is Calculus?   Answers to Warm-Up 2,3  1. Skim 5.1-5.3;  Make list of your questions about 5.1-5.3; Pg. 311: 2, odd 5-13, 66; Pg. 320: 3-8; Fill out form: http://fusion.stolaf.edu/formcreator/
F. 9  5.1-5.3 Review of derivatives, and  integrals   2. Read 5.4, Pg. 330: 11, 13, 15, 18, 20, 22, 24, 26, 28, 30, 31; 
F.11  5.4  Integration by substitution Answers to Examples 3.Read 3.4 (in Appendix); Pg. 340: 2,4,5, 24, 27, 30, 33, 36, 39, 42, 45, 48; (check with your calculator). 
 
 
 
 
F.14  3.4, 5.4 Inverse trig. functions and derivatives and integrals 4. Review 3.4, 5.4; P. 341: 26, 32, 34, 40, 51, 52, 53: P. S-10: 2, 5, 8, 10, 14, 16;  
F.16  5.3, 5.5 Derivation & use of  FTC 5. Read 5.6; P.342: 69, 72, 74; S-10: 18, 23, 24;  Use your calculator for the following: P.348: 19, 24,27, 31, 33 
F.18  5.6  Integral as a limit   6. Read 5.7; P. 354: 1-4,22,27,29; P. 362: 2, 4; Do Maple TA-1 & 2 by Monday
 
 
    
F.21 5.7  Working with sums  7. Read Ch.5 summary and 6.1; Do Maple TA-3 for Wed.; P.355: 24, 28; P.362: 5,8,13,14,22,27,34,37,41
F.23  6.1 Approximating integrals  8. Read 6.2; Do TA-4 for Friday; P.363: 39, 45; P.381: 1, 4, 9, 12, 25, 26 
F.25 6.2  Error bounds  9.  Read 7.1; TA-5 for Monday; P. 391: 1, 2, 9, 11 (add 11b:  Repeat 11 for M_n), 23; P. 420: 5, 13  
 
 
 
 
F.28  7.1  Arc length and Area  10. Read 7.2; TA-6  for Wed.; P. 420: 6, 7, 8, 14, 23, 37 (in #37: change 4" to 2") 
M. 2  7.1 Arc length and Area 11.  Reread 7.2; TA-7 for Mon.; P. 421: 19, 24, 54, 58; P. 428: 4, 5  (problems due M. 9)
M. 4    Test I  Covers Sections 3.4, 5.1-5.7, 6.1-6.2
         
M. 7 7.2 Volumes  12.  Read 8.1; TA-8 for Wed; P. 429: 11, 13, 19, 25; P.465: 9, 10, 11, 14 
M. 9  7.2, 8.1 Volumes, Int. by Parts   13.  Reread 8.1; TA-9 for Fri; P. 429: 15, 18, 20, 26; P. 465: 15, 16, 17 [You do not need to check 15, 16, & 17]
M.11 8.1, 8.4  Integration by Parts  14. Read 7.4; TA-10 for Mon;  P 430: 29, 37, 39; P 466:  37, 40, 44 (first subst. w = ln x), 45 (first subst. w = x^(1/2))
               
M.14  7.4 Solving DE's  15. Read 7.5; TA-11 (due Wed); Pg. 446: 9, 11, 14, 15, 16, 19, 20, 25  (For 14, use "solve" on your TI)
M.16  7.5  Solving DE's; Present Value 16. Read 4.2 (p. S-12); TA-12 (due Fri); Pg. 452: 1 (1b - answer should be 158,817), 3, 5, 6, 9
M.18  4.2 Credit Card example; Derivation of "e" No TA due March 30
 
 
Spring Break  
M.30 4.2 Limits involving infinity 17. Read 9.1; Maple TA-13 (due Fri.); Pg. S-22: 14,19,26, 28-30,36,37,55,58,63,73 (due Mon.)
A. 1 9.1  Taylor Polynomials   18. Read 9.2; TA-14  (due Mon) Pg. 501: 1, 3, 4, 8, 14, 27 (In Problem 1, change "series" to"polynomial.")
 
 
 
 
A. 4 9.2  Taylor's Theorem  19. Read 9.2 again; TA-15 (due Wed); Pg. 501: 9, 17, 19; Pg. 508: 1, 3, 7
A. 6 9.2  Taylor's Theorem   20. Read 10.1;  Add to assignment 19 & turn in Fri.: Pg. 508:  4, 5 [for (b) in both use your TI's Taylor command to get p(x)].   Redo TA's and do Test 2 Review problems 
A. 8  10.1   Improper Integrals  21. Read 10.2; TA-16 (due Wed.) Pg. 529: 1-4, 7, 8, 10, 25, 26 (due A. 15)
            
A.11       Test II  Sections: 4.2, 7.1-7.2, 7.4-7.5, 8.1, 9.1-9.2
A.13  10.2, 10.3 Detecting Convergence  22. Read 10.3; TA-17 (due Fri); P. 536: 3, 7, 9, 11, 14, 15
A.15 10.2 Convergence of Improper Integrals  23. Read 11.1-11.2; TA-18 (due Mon) P. 537: 12, 17, 18, 27, 28, 29

 

 

 

 
A.18 11.1 Seq. & Series  24. Read 11.2, TA-19 (due Wed); Pg. 553: 1, 6, 11, 13, 15, 16, 19, 21
A.20  11.2 Convergence of Infinite Series  25. Read 11.3; TA-20 (due Fri); Pg. 553: 17, 18, 25; Pg. 564: 1, 11, 16, 17
A.22  11.3  Testing for convergence 26. Read 11.4; TA-21 (due Mon.); Pg. 564: 3, 39, 45; Pg. 573: 9, 10, 18, 19 (for 18 & 19 only find upper bounds)
 
 
 
 
A.25  11.3 Comparison, Integral Test 27. Reread 11.4; TA-22 (due Wed); Pg. 574: 14, 20, 22, 23, 48, 51 (For 20 find only an upper bound; for 48 & 51 don't find either bound)
A.27 11.3, 11.4  Ratio Test, Absolute Conv.  28. Reread 11.3-11.4; TA-23 (due Fri.); Pg. 573: 1, 21, 31, 45, 46, 49; Pg. 582: 9, 12
A.29 11.4, 11.5 Alternating Series, Power Series 29. Read 11.5; Pg. 582: 10, 19-23; Pg. 589 1, 3; No TA, but before Monday, decide which series test you would try first on the sample series on the  (you don't need to actually use the series test you  name).

 
 

 

 
M.2 11.5 Power Series   30. Read M.1; TA-24 series handout (due Wed.); Pg. 589: 2, 4, 8*-10*, 27-32 (*only open intervals for 8 -10)  
M.4  11.5, M.1  Power Series, Three-dimensional space  31. TA-25 (due Fri.); Pg. 590: 33-38; Pg. M.8: 1, 2, 7, 8
M.6 M.2 Functions of two variables  32. Read M.2 & 3; TA-26 (due Mon); Pg. M-8: 3-6, 9-11; Pg. M-15: 2,5,6 (due May 13)
              
M.9 M.3   Partial Derivatives   33.Read M.4; No TA; Pg. M-15: 10-13, Pg. M.23: 1-8, 13, 14 (due M.16) 
M.11     Test III  Sections: 10.1-10.2, 11.1-11.5 
M.13  M.4 Partial Derivatives No assignment

 
 

 

 
M.16  Review        
M. 19   Final Exam  9:00 am
 

 

Disclaimer