Weak Acids and Bases Practice -- Chemistry 121A Hanson

OK, what's new here really is just percent ionization. The way to think of this is that it is just a form of percent yield. It runs from 0% (all reactants) to 100% (all products). This is simply more convenient than Q , which runs from 0 to infinity. The way I look at it is this for a weak acid:

$$
\text { \%ionization }=\left[\mathrm{A}^{-}\right] \mathrm{eq} /[\mathrm{HA}] \mathrm{o} \times 100 \%
$$

That is, the "final" concentration of A- at equilibrium divided by the "initial" concentration of HA times 100%. What's interesting is that since when you start with a weak acid as the sole principal species in solution, we have:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

and since both A^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$come from the same process in that case, their concentrations are the same at equilibrium. Right? Think about the implications. We can easily answer questions like:

1. What is the percent ionization of $0.10 \mathrm{M} \mathrm{HF}\left(K_{a} 7.2 \times 10^{-4}\right)$?
[We know K_{a}, so we can get $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$easily enough using an ICE table. Try that. You should get 8.1\%.]
2. A 0.10 M solution of an acid HA is found to be 3.5% ionized. What is the Ka of this acid?
[Actually, this is easier. Just fill in the ICE table "puzzle" with numbers and calculate $\mathrm{Q}_{\text {eq }}$. Answer: 1.3×10^{-4}] or
3. A 0.10 M solution of an acid HA is found to have a pH of 6.22 . What is the percent ionization of this acid?
[Answer: only $6.0 \times 10^{-4} \%$]
4. What is its K_{a} ?
[Answer: 3.6×10^{-10}]
Turns out this also works with bases. Consider:

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Here we define percent ionization as:

$$
\text { \%ionization }=\left[\mathrm{NH}_{4}{ }^{+}\right] \text {eq } /\left[\mathrm{NH}_{3}\right] \mathrm{o} \times 100 \%
$$

This time we have $\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{OH}^{-}\right]$at equilibrium as long as we just start with NH_{3}. And we can ask:
5. What is the percent ionization of $0.10 \mathrm{M} \mathrm{NH}_{3}\left(K_{b} 1.8 \times 10^{-5}\right)$?
[We know K_{b}, so we can get $\left[\mathrm{OH}^{-}\right]$easily enough using an ICE table. Answer: 1.3\%]
Ready for a harder one?
6. A 0.10 M solution of a weak base B is found to have pH 9.20. What is the Kb of this base?

Want more? Google weak acid practice or weak base problems or such. You will find plenty!

