
Multi-core programming with Intel's Manycore
Testing Lab

Intel Corporation has set up a special remote system that allows faculty and students to
work with computers with lots of cores, called the Manycore Testing Lab (MTL). In this lab, we
will create a program that intentionally uses multi-core parallelism, upload and run it on the
MTL, and explore the issues in parallelism and concurrency that arise.

Extra: Comments in this format indicate possible avenues of exploration for people seeking
more challenge in this lab.

1 Requirements
It is recommended that you work on a non-lab machine (preferably a personal laptop) for

this lab; you can still use the lab computers in order to develop our multi-core program, but we
need to connect to the Intel MTL system using a non-lab computer. This is because the Cisco
VPN software for connecting to the MTL blocks all other network access, so we can't use it on
the lab computers or it would interfere with all other uses of those computers.

If you choose to use your own computer for this lab, you will need the following
materials:

• A C++ compiler, if you do not have one on your computer already. GNU's gcc compiler
is one such example, and is available on Windows, Mac OS, and Linux.

• A text editor or program to write and save C++ programs

• Cisco VPN client, which we will use to access the MTL. Instructions for installing Cisco
VPN client for your machine is detailed in the next section.

• A terminal. Linux and Mac OS have UNIX-based terminals by default. For Windows,
you also need ssh and scp capabilities. Putty and Cygwin are two ways to get these
capabilities. With Putty, you'll need both putty.exe and pscp.exe. Ask for help if
you need it.

2 Preparing your machine for the lab
Carry the steps in this section before the lab, if possible, on a laptop you can bring with you to
the lab session.

The Cisco VPN client software is free, easy to install, easy to use, and does not interfere
with your computer except while you are connected to the MTL. Here are download links (install
before the lab if possible):

• Windows (2000,XP,Vista,7)

Download the from this link and run the executable to install the Cisco VPN client.

• Mac OS 10.4 and later

Download from this link, which creates a pseudodisk on your desktop, then open that

http://gcc.gnu.org/
http://helpdesk.ugent.be/vpn/download/vpnclient-darwin-4.9.01.0080-universal-k9-5-10.dmg
http://www.cs.stolaf.edu/pub/vpnclient-win-msi-5.0.06.0160-k9.exe
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

pseudodisk and follow the instructions. (You can delete the pseudodisk when you're
done.)

You can use a UNIX terminal window to access ssh and scp.

• For Linux and other versions of Windows and Macintosh, you can see the University of
Ghent page that these downloads were obtained from. Choose among the "Cisco VPN
clients without config file".

Once you have installed the Cisco VPN client (and have ssh and scp installed),
configure the Cisco VPN client to access the multicore testing lab, as follows.

1. Start up the Cisco VPN client.

• Note: This is installed as a software application. Don't look for it under system network
connection options, like other VPN systems.

2. Create a new connection, with the following connection information:

• Connection entry: Choose a name, perhaps "Intel MTL VPN"

• Description: Optional

• Host: 192.55.51.80

• Select Group Authentication (probably the default)

• Name is VPN2

• Password is sent to you separately.

Save this connection to finish creating it.

3. Now try connecting on your new VPN connection entry.

• If this succeeds, you will find that none of your usual network services work. For
example, your browser won't be able to find any pages (thus, you'll have to use a
different machine while you're connected to the MTL if you need to access
network services).

• If your new VPN connection fails, recheck the settings you entered, or seek help.

4. Finally, disconnect from your new VPN connection entry. This will give you your usual
network capabilities back, etc.

3 Intel's Threading Building Blocks (TBB)
OpenMP works well for adding parallelism to loops in working sequential code, and it's

available for C, C++, and Fortran languages on many platforms (including Linux, Windows, and
Macintosh OS X). Older versions of OpenMP did not readily support non-loop parallelism or
programming with concurrent data structures, but OpenMP version 3.0 (released May 2008)
provides a task feature for programming such computations.

Intel's Threading Building Blocks (TBB) provides an object-oriented approach to
implementing parallel algorithms, for the C++ language (and any of the three platforms). Adding
parallelism to existing code in TBB is somewhat more involved than in OpenMP, but is
considerably less complicated than programming in a native threads package for a particular
operating system. The forthcoming new standard for the C++ language is likely to include

http://helpdesk.ugent.be/vpn/en/akkoord.php
http://helpdesk.ugent.be/vpn/en/akkoord.php
http://www.threadingbuildingblocks.org/

parallelism similar to TBB.

1. Enter the following TBB program into a file trap-tbb.cpp.

#include <iostream>
#include <cmath>
using namespace std;

#include "tbb/tbb.h"
using namespace tbb;

/* Demo program for TBB: computes trapezoidal approximation to an
integral*/

const double pi = 3.141592653589793238462643383079;

double f(double x);

class SumHeights {
 double const my_a;
 double const my_h;
 double &my_int;

public:
 void operator() (const blocked_range<size_t>& r) const {
 for(size_t i = r.begin(); i != r.end(); i++) {
 my_int += f(my_a+i*my_h);
 }
 }

 SumHeights(const double a, const double h, double &integral) :
 my_a(a), my_h(h), my_int(integral)
 {}
};

int main(int argc, char** argv) {
 /* Variables */
 double a = 0.0, b = pi; /* limits of integration */;
 int n = 1048576; /* number of subdivisions = 2^20 */

 double h = (b - a) / n; /* width of subdivision */
 double integral; /* accumulates answer */

 integral = (f(a) + f(b))/2.0;

 parallel_for(blocked_range<size_t>(1, n), SumHeights(a, h,
integral));

 integral = integral * h;
 cout << "With n = " << n << " trapezoids, our estimate of the
integral" <<
 " from " << a << " to " << b << " is " << integral << endl;
}

double f(double x) {

 return sin(x);
}

Comments on this code:

• This program does not use a command-line argument (and the cstdlib library is not
needed). Unlike OpenMP, TBB does not provide a simple way to request a particular
number of threads. Instead, the TBB system chooses a number of threads to use
automatically. (OpenMP will also make such a selection for you if you do not specify the
number of threads to use.)

• The following lines prepare for using TBB.

 #include "tbb/tbb.h"
 using namespace tbb;

• Recall that in the OpenMP code, we parallelized the loop below by adding a pragma just
before that for loop.

 for(i = 1; i < n; i++) {
 integral += f(a+i*h);
 }

• In order to program a comparable computation in TBB, we create a class SumHeights
whose method operator() contains the following loop:

 for(size_t i = r.begin(); i != r.end(); i++) {
 my_int += f(my_a+i*my_h);
 }

then passes an instance of that class SumHeights to a call of parallel_for().
Observe that the forms of the two loops indicate the same iterative computation, if one
matches 1 to r.begin(), n to r.end(), variables and integral, a, and h to
SumHeights state variables my_int, my_a, and my_h.

One way to describe this relationship is to say that the class SumHeights is a "wrapper"
around its loop.

i. The class SumHeights defines operator(), which means that an object of type
SumHeights can be called using function-call syntax. Since operator() is
defined here with one argument, this means we can cause the for loop to execute
using a call sh(range), where sh is an object of type SumHeights and range
is an appropriate argument.

ii. Note that operator() is a const method (indicated by the const after) and
before {), which means that it is permitted to call sh(range) with a const object
sh.

iii. The argument r of operator() indicates the range of the loop, i.e., the starting
and ending values for the loop control variable.

iv. The loop control variable i has type int in the OpenMP implementation, but type
size_t in the TBB implementation. size_t is an integer type, which may be
equivalent to int, long, or another integer type depending on implementation.

v. The constructor SumHeights() makes local copies my_a, etc., of variables a, etc.,
in main(), enabling values in main() to be used within the class SumHeights.

• The range r has the type blocked_range<size_t>. This is a templated type
built over the size_t type. There could be blocked_range types built over
other types, as well, e.g., int or long.

• The call to parallel_for in main() automatically subdivides (or chunks) the
range r for multi-threaded parallel computation. parallel_for expects a
range in its first argument, and an object with a method operator() having one
range argument in its second argument.

• The variable integral is passed by reference in the constructor
SumHeights() in an effort to use that memory location integral as an
accumulator during the parallelized computation.

• The constructor initializes the state variables my_a, my_h, and my_int using
colon initializers. In the constructor definition

 SumHeights(const double a, const double h, double &integral) :
 my_a(a), my_h(h), my_int(integral)
 {}

the expression my_a(a) located after the colon : and before the curly bracket
{ has the same effect as an assignment

 my_a = a;

would if it occurred between the curly brackets. Colon initialization is optional for
the state variables my_a and my_h, but it is required for the state variable
my_int, because that state variable was defined using a reference type.

Note: Can you detect any problems in this code?

2. For this lab, we will run this TBB program on the MTL.

• First, if necessary, copy the program file you created to a local machine for
connecting to MTL, e.g., your laptop.

• If your code is on a lab machine, use the following command from the terminal on
your local machine (where “username” is your username, “labmachinename” is
the name of the machine on which you are working, and “file_location” is the
location of trap-tbb.cpp within your directory):

 laptop% scp username@labmachinename:file_location/trap-tbb.cpp .

(Don't forget the final dot!)

• Now connect to the MTL's network using the Cisco VPN client software on that
local machine. Login to the MTL computer, as follows:

 laptop% ssh accountname@36.81.203.1

Use one of the student account usernames provided to you, together with the
password distributed to the class.

• Create a subdirectory for yourself in the home directory for that student account
name:

 36.81.203.1% mkdir username

Here, username can be your username.

• Use scp to copy your file to your subdirectory in the MTL system:

 laptop% scp trap-omp.C accountname@36.81.203.1:username

After making this copy, login into the MTL machine 36.81.203.1 again.

• On the remote MTL system, execute the following command, which sets up
environment variables for compiling with TBB:

 36.81.203.1% source
/opt/intel/Compiler/11.1/056/tbb/bin/tbbvars.sh intel64

The intel64 command-line argument prepares for 64-bit compilation.

• To compile your program that was copied in a prior step, issue this command:

 36.81.203.1% g++ -o trap-tbb trap-tbb.cpp -ltbb_debug

Note: You can use -ltbb instead of -ltbb_debug for a production version of
the library instead of one with debugging hooks.

• Now run your program with the following command:

 36.81.203.1% ./trap-tbb

The result is significantly less than 2! Can you think of an explanation for the
answer being so far off?

Also run several time tests of your program

 36.81.203.1% time ./trap-tbb

What do you observe in these time tests? How do the times compare to timed runs
of trap-omp for various thread sizes?

4 TBB, multiple threads, and reduction
The code above for a TBB trapezoidal computation produces an incorrect answer if there

are multiple threads, because each thread attempts to update the shared variable integral
without any mechanism to avoid one thread from overwriting the results produced by another
thread. We will solve this issue using a reduction, in which results will be computed in local
variables for each thread, then those local results added together at the end.

1. To do the reduction in TBB, we will use the parallel_reduce call instead of the
parallel_for call, and will use a modified class SumHeights2.

#include <iostream>
#include <cmath>
using namespace std;

#include "tbb/tbb.h"
using namespace tbb;

/* Demo program for TBB: computes trapezoidal approximation to an
integral*/

const double pi = 3.141592653589793238462643383079;

double f(double x);

class SumHeights2 {
 double const my_a;
 double const my_h;

public:
 double my_int;

 void operator() (const blocked_range<size_t>& r) {
 double a2 = my_a;
 double h2 = my_h;
 double int2 = my_int;
 size_t end = r.end();
 for(size_t i = r.begin(); i != end; i++) {
 int2 += f(a2+i*h2);
 }
 my_int = int2;
 }

 SumHeights2(const double a, const double h, const double integral) :
 my_a(a), my_h(h), my_int(integral)
 {}

 SumHeights2(SumHeights2 &x, split) :
 my_a(x.my_a), my_h(x.my_h), my_int(0)
 {}

 void join(const SumHeights2 &y) { my_int += y.my_int; }
};

int main(int argc, char** argv) {
 /* Variables */
 double a = 0.0, b = pi; /* limits of integration */;
 int n = 1048576; /* number of subdivisions = 2^20 */

 double h = (b - a) / n; /* width of subdivision */
 double integral; /* accumulates answer */

 integral = (f(a) + f(b))/2.0;

 SumHeights2 sh2(a, h, integral);
 parallel_reduce(blocked_range<size_t>(1, n), sh2);
 integral += sh2.my_int;

 integral = integral * h;
 cout << "With n = " << n << " trapezoids, our estimate of the
integral" <<
 " from " << a << " to " << b << " is " << integral << endl;
}

double f(double x) {

 return sin(x);
}

Comments:

• The class SumHeights2 handles the variable my_int differently than the class
SumHeights does. Instead of SumHeights's misguided attempt to share main()'s
memory location integral through reference types, the new class SumHeights2
allocates a new separate (state) variable location my_int for each object of type
SumHeights2 (by avoiding reference types).

• Also, my_int is a public state variable in SumHeights2, instead of the default
private visibility in the prior class SumHeights. This makes it possible for a method
of a SumHeights2 object to compute a value and store that value in my_int, then for
another part of the code to access that computed value through that public state variable
my_int. (Alternatively, we could have made my_int private like the other state
variables, and added a "getter" method get_my_int() to retrieve that computed
value.)

• The operator() definitions in the two classes differ in several ways.

i. The code for the new class's operator SumHeights2::operator() begins my
making local copies a2, h2, and int2 of the variables my_a, my_h, and my_int,
and also storing the (unchanging) value of r.end() in another local variable. These
local variable assignments are not necessary for the logical correctness of the code.
Instead, they make it possible for the compiler to produce a more efficient
computations. With this help, the compiler can realize that it's safe to use registers to
implement those variables instead of memory locations, which would lead to faster
access to those values.

ii. The loop is rewritten to use these local variables, but otherwise represents the same
computation as in the previous SumHeights::operator().

iii. After the loop, the local variable int2 is assigned to the state variable my_int, in
order to deliver the sum for this thread's subdivision (chunk) of the summation range.

iv. SumHeights2::operator() is not a const method. This means it's not safe
for const objects to call this method -- they will be changed. In this case, the change
is that my_int is changed when operator() is called.

• The three-argument constructor for SumHeights is the same as the three-argument
constructor for SumHeights2, except for the handling of the third argument
integral (discussed above).

• However, the class SumHeights2 has an additional constructor and an additional
method join().

i. The second constructor is called a split constructor. This constructor will be used to
construct new instances of SumHeights2 for additional threads brought into the
summation computation.

ii. The method join() is used to add the partial sum from one thread's computation to
a running sum -- i.e., to perform the reduction operation.

• Here is an overview description of the parallel computation for this program.

i. An object sh2 is allocated, using the three-argument constructor for SumHeights2.

ii. The call to parallel_reduce() in main() performs sh2's operator() over
the range 1 to n by subdividing (i.e., chunking) that range and assigning a thread to
perform the trapezoidal sum for each chunk.

iii. Each of those threads creates its own SumHeights2 object using the splitting
constructor.

• The thread first calls that splitting object's operator() with that thread's range
chunk to compute a partial sum.

• Then, the thread calls sh2.join() with that splitting object as the argument, in
order to add its partial sum to sh2's accumulator sh2.my_int.

iv. After all range chunks have been processed, parallel_reduce() finishes,
leaving the final answer in the public state variable sh2.my_int.

• The splitting constructor for SumHeights2 has a dummy argument of type
split (defined by the TBB library), because without that extra argument, there
would be no way for a compiler to tell the difference between a call to that
splitting constructor and a call to SumHeight2's copy constructor.

2. Enter the program above, using the filename trap-tbb2.cpp.

You can enter it on a lab machine, but then you'd have to disconnect Cisco VPN on your
local machine (e.g., your laptop), scp the new file to your local machine, reconnect
Cisco VPN, and scp to the MTL machine in order to transfer it to the MTL system.

Alternatively, you could enter the program on your local machine and scp to the MTL
machine. Another possibility is to enter it on the remote MTL system directly, using an
editor such as emacs or vi.

3. Compile and test your trap-tbb2 program on the MTL. Does it now produce the
correct answer of 2 for the trapezoidal approximation?

4. Also time the performance of runs of this revised program, and compare to the time
performance of runs of the prior program trap-tbb.

	1	Requirements
	2	Preparing your machine for the lab
	3	Intel's Threading Building Blocks (TBB)
	4	TBB, multiple threads, and reduction

