1. (25 points) In each case below, select the substrate that would be expected to react faster in a substitution reaction under the conditions shown and show its expected major substitution product. Indicate whether this is an S_N1 reaction or an S_N2 reaction. (Don’t worry about the possibility of elimination here.)

 a. \[
 \text{Cl} \quad \text{vs.} \quad \text{Cl} \quad \xrightarrow{\text{NaI}} \quad \text{acetone}
 \]

 b. \[
 \text{Br} \quad \text{vs.} \quad \text{Cl} \quad \xrightarrow{\text{NaOH}} \quad \text{H}_2\text{O}
 \]

 c. \[
 \text{F} \quad \text{vs.} \quad \text{Br} \quad \xrightarrow{\text{NaCN}} \quad \text{DMF}
 \]

 d. \[
 \text{Cl} \quad \text{vs.} \quad \text{I} \quad \xrightarrow{\text{H}_2\text{O}} \quad \text{heat} \quad \text{(careful!)}
 \]

 e. \[
 \text{Br} \quad \text{vs.} \quad \text{Br} \quad \xrightarrow{\text{NaSCH}_3} \quad \text{DMF} \quad \text{(make a model!)}
 \]

2. (20 points) Briefly discuss why each of the following statements might be true:

 a. Primary iodides react faster than secondary iodides in S_N2 reactions.
 b. Tertiary iodides do not react with the S_N2 mechanism.
 c. Primary iodides do not react with the S_N1 mechanism.
 d. Higher concentration of a good nucleophile favors S_N2 reaction over S_N1 reaction.
 e. Treatment of a secondary bromide with a strong hindered base results in elimination.
3. (25 points) The following conditions are available:

i. H$_2$O, heat
ii. MeOH, heat
iii. NaI, acetone
iv. NaOH, H$_2$O
v. KO-t-Bu, DMF
vi. NaOH, DMF

From this list, pick the conditions that would best effect the desired transformation in each of the cases below, indicating S$_N$2, S$_N$1, E2, or E1. (Use each reagent no more than once; one is not used. Only one reagent in each case is the best for the indicated job.) In each case, explain your reasoning.