• **Theorems:** In this worksheet you will compute explicit examples illustrating the 6 following theorems concerning a homomorphism \(\phi : G \rightarrow G' \).

- If \(H < G \) then \(\phi(H) < G' \).
- If \(K' < G' \) then \(\phi^{-1}(K') < G \).
- Range \(\phi < G' \).
- Ker \(\phi < G \).
- If \(\phi(x) = y \) then \(\phi^{-1}(y) = x \text{ Ker } \phi \) (a left coset).
- \(\phi \) is one-to-one if and only if Ker \(\phi = \{e\} \).

• **Computations:** Consider the homomorphism \(f : \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{12} \) given by \(f(n \mod 18) = 2n \mod 12 \). So, for example, \(f(7) = 2 \).

1. Find \(f(n) \) for all \(n \in \mathbb{Z}_{18} \).

2. Consider \(H = \langle 3 \rangle < \mathbb{Z}_{18} \). Identify the elements in \(f(H) \). For what \(a \in \mathbb{Z}_{12} \) is \(f(H) = \langle a \rangle \)?

3. Consider \(K' = \langle 4 \rangle < \mathbb{Z}_{12} \). Identify the elements in \(f^{-1}(K') \). For what \(b \in \mathbb{Z}_{18} \) is \(f^{-1}(K') = \langle b \rangle \)?

4. Identify the elements in Range \(f \). For what \(a \in \mathbb{Z}_{12} \) is Range \(f = \langle a \rangle \)?

5. Identify the elements in Ker \(f \). For what \(b \in \mathbb{Z}_{18} \) is Ker \(f = \langle b \rangle \)?

6. Note that \(f(5) = 10 \). Identify the elements in \(f^{-1}(10) \).

7. How many distinct left cosets of Ker \(f \) in \(\mathbb{Z}_{18} \) are there? What are they?
8. What do you notice about your answer to (6) compared with your answer to (7)?

9. Question (6) indicates that f is not one-to-one. Rather it is ____-to-one. Notice also that $|\text{Ker } f| = ____$.

- Learn the proof of LaGrange’s Theorem
- Homework 18: §3.1/ 1,2,3,6,8,9,16,17,18,20,28,29
- Due: Wednesday April 10