Humke’s Almost All Abelian Groups
Work Sheet 22

1. Find all non-isomorphic abelian groups of orders 12, 72, 105, 60025.

2. Conjecture the condition(s) under which there is only one distinct abelian group of order \(n \).

3. Use the fact that \(\mathbb{Z}_n \times \mathbb{Z}_m \cong \mathbb{Z}_{nm} \) if and only if \(\gcd(n, m) = 1 \) to rewrite the following products. You may either “collapse” the products or “expand” them. For example, we can collapse \(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4 \) to \(\mathbb{Z}_6 \times \mathbb{Z}_4 \). There may be several ways to do this, you should find at least two per problem.

 (a) \(\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{10} \)

 (b) \(\mathbb{Z}_4 \times \mathbb{Z}_6 \times \mathbb{Z}_{10} \)

 (c) \(\mathbb{Z}_9 \times \mathbb{Z}_{50} \)

4. The set \(G = \{1, 4, 11, 14, 16, 19, 26, 29, 31, 34, 41, 44\} \) is a group under multiplication mod 45.

 (a) Find the orders of all the elements in \(G \).

 (b) Of the groups you listed above of order 12, which one is isomorphic to \(G \)? (To answer this, compare orders of elements in the 3 groups of order \(\mathbb{Z}_{12} \) to orders of elements in \(G \).)

Homework 22

Due: Friday April 19

- §2.4/21,24,43
- Identify the group \(U_{50} \) as a product of cyclic groups
- Show that \(\{(g, g) \mid g \in G\} \) is a subgroup of \(G \times G \).
- Let \(H = \{(x, e) \mid x \in G_1\} \). Prove that \(H \) is a subgroup of \(G_1 \times G_2 \). Then show that \(H \cong G_1 \).