1. Prove that $1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \in \mathbb{Z}^+$.

2. Determine which of the following relations is an equivalence relation on \mathbb{Z}. If a relation is not an equivalence relation, say which of the three properties hold.
 (a) $x \sim y \iff x = y$
 (b) $x \sim y \iff x \leq y$
 (c) $x \sim y \iff x$ and y are divisible by the exact same powers of 2.

3. Prove that the relation on \mathbb{Z} given below is an equivalence relation (when n is a positive integer).
 $$x \sim y \iff x - y \text{ is divisible by } n$$

4. Suppose $n = 4$ in the relation above.
 (a) List the elements in \mathbb{Z}_4. What about \mathbb{Z}_{12}?
 (b) How many different equivalence classes are there?
 (c) Use the equivalence relation to partition \mathbb{Z}.

5. Is the following relation on the set of all humans an equivalence relation?
 $$x \sim y \iff x \text{ and } y \text{ have the same (biological) parents.}$$

6. Let P_3 be the set of all polynomials of degree less than or equal to 3. Let $f(x)$ and $g(x)$ be two polynomials in P_3, and define a relation on P_3 by:
 $$f \sim g \iff f' = g'.$$
 (a) Is the relation an equivalence relation?
 (b) Describe the elements in the sets x^2 and $x^2 + 7x$.
 (c) Describe a partition of P_3 into distinct equivalence classes.

Homework due Monday, February 18

- Do the problems above.
- Make sure you have read §0.1–§0.3
- §0.2/29–32, 35, 36a
- §0.3/2, 3, 4