Comparison of some families of real functions in sense of porosity

Julia Wódka

We consider set $\mathbb{R}^{\mathbb{R}}$ with uniform convergence metric, i.e.

$$\rho(f,g) := \max\{1, \sup_{x \in \mathbb{R}} |f(x) - g(x)|\} \text{ for } f, g \in \mathbb{R}^{\mathbb{R}}$$

and the following subsets of $\mathbb{R}^{\mathbb{R}}$: quasi-continuous (Ω) and Świątkowski functions (\hat{S}) and strong Świątkowski functions (\hat{S}_s):

- $f \in \Omega$ if for all a < x < b and each $\varepsilon > 0$ there exists an open interval $J \subset (a, b)$ such that diam $f[J \cup \{x\}] < \varepsilon$.
- $f \in S$ if for all a < b with $f(a) \neq f(b)$, there is a y between f(a) and f(b) and an $x \in (a, b) \cap C(f)$ such that f(x) = y.
- $f \in S_s$ if for all a < b with $f(a) \neq f(b)$ and for all y between f(a) and f(b) there is an $x \in (a, b) \cap C(f)$ such that f(x) = y.

For arbitrary matric space (X, d), $x \in M \subset X$, and $r \in \mathbb{R}_+$ one can define:

$$\gamma(x, r, M) = \sup\{t \ge 0 : \exists_{z \in X} B(z, t) \subset B(x, r) \setminus M\}$$
 and

$$p(M, x) = 2 \limsup_{t \to r^+} \frac{\gamma(x, r, M)}{r}$$

Quantity p(M, x) is called *porosity of* M at the point x. We say that M is *porous* if p(M, x) > 0 for all $x \in M$ and that it is *strongly porous* if p(M, x) = 1 for all $x \in M$.

We have compared considered sets in terms of porosity and we obtained the following results:

- the family \hat{S}_s is strongly porous in $(\Omega \hat{S}, \rho)$,
- the family $Q\hat{S}$ is strongly porous in (\hat{S}, ρ) ,
- the family $Q\hat{S}$ is 1/3 porous in (Q, ρ) ,
- the family $Q\hat{S}$ is not strongly porous in (Q, ρ) .