Jacek Hejduk, Faculty of Mathematics and Computer Science, University of Lódź, Banacha 22, PL-90-238 Łódź, Poland. email: hejduk@math.uni.lodz.pl Renata Wiertelak, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, PL-90-238 Łódź, Poland. email: wiertelak@math.uni.lodz.pl

ON SOME PROPERTIES OF J-DENSITY TOPOLOGIES AND J-APPROXIMATELY CONTINUOUS FUNCTIONS

1 Introduction

Notations \mathbb{R} - the set of real numbers, \mathbb{N} - the set of positive integers, |J| - the length of an interval J, diam(A) - the diameter of the set $A \subset \mathbb{R}$ λ - the Lebesgue measure on \mathbb{R} , \mathcal{L} - the σ -algebra of Lebesgue measurable sets on \mathbb{R} , \mathcal{N} - the σ -ideal of Lebesgue null sets on \mathbb{R} , \mathcal{N} - the natural topology on \mathbb{R} , $A \bigtriangleup B = (A \setminus B) \cup (B \setminus A)$, $J + x = \{a + x : a \in J\}$ for $J \subset \mathbb{R}$, $J - x = \{a - x : a \in J\}$ for $J \subset \mathbb{R}$. Let $A \in \mathcal{L}$ and $x_0 \in \mathbb{R}$.

We shall say that a point x_0 is a **density point** of A if

$$\lim_{h \to 0^+} \frac{\lambda((A - x_0) \cap [-h, h])}{2h} = 1 \Leftrightarrow$$
$$\lim_{n \to \infty} \frac{\lambda((A - x_0) \cap [-\frac{1}{n}, \frac{1}{n}])}{\frac{2}{n}} = 1.$$

Mathematical Reviews subject classification: Primary: 26A15; Secondary: 54A10, 26A21 Key words: density topology, \mathcal{J} -density topology, \mathcal{J} -approximately continuous functions

Let $\langle s \rangle = \{s_n\}_{n \in \mathbb{N}} \subset \mathbb{R}_+$ and $s_n \nearrow \infty$.

We shall say that a point x_0 is an $\langle s \rangle$ -density point of A if

$$\lim_{n \to \infty} \frac{\lambda((A - x_0) \cap [-\frac{1}{s_n}, \frac{1}{s_n}])}{\frac{2}{s_n}} = 1.$$

2 A \mathcal{J} -density point

We say that a sequence $\mathcal{J} = \{J_n\}_{n \in \mathbb{N}}$ of closed intervals is **tending to zero** (denoted $J_n \xrightarrow[n \to \infty]{} 0$) iff

$$\lim_{n \to \infty} \operatorname{diam}(J_n \cup \{0\}) = 0.$$

 \Im - the family of all sequences of closed intervals tending to zero. Let $A \in \mathcal{L}, \mathcal{J} \in \Im$ and $x_0 \in \mathbb{R}$.

We shall say that a point x_0 is a \mathcal{J} -density point of the set A if

$$\lim_{n \to \infty} \frac{\lambda((A - x_0) \cap J_n)}{|J_n|} = 1.$$

An operator $\Phi_{\mathcal{J}}$

Let $A \in \mathcal{L}$ and $\mathcal{J} \in \mathfrak{S}$.

 $\Phi_{\mathcal{J}}(A) = \{ x \in \mathbb{R} : x \text{ is a } \mathcal{J}\text{-density point of the set } A \}.$

Theorem 1. Let $A, B \in \mathcal{L}$ and $\mathcal{J} \in \mathfrak{S}$.

- 1. $\Phi_{\mathcal{J}}(\emptyset) = \emptyset$ and $\Phi_{\mathcal{J}}(\mathbb{R}) = \mathbb{R}$,
- 2. $\Phi_{\mathcal{J}}(A \cap B) = \Phi_{\mathcal{J}}(A) \cap \Phi_{\mathcal{J}}(B),$
- 3. if $(A \triangle B) \in \mathcal{N}$, then $\Phi_{\mathcal{J}}(A) = \Phi_{\mathcal{J}}(B)$,
- 4. $(\Phi_{\mathcal{J}}(A) \setminus A) \in \mathcal{N},$
- 5. $\Phi_{\mathcal{J}}(A) \in F_{\delta\sigma}$.

Therefore $\Phi_{\mathcal{J}}$ is an almost lower density operator.

3 A \mathcal{J} -density topology

Theorem 2. Let $\mathcal{J} \in \mathfrak{S}$. The family

$$\mathcal{T}_{\mathcal{J}} = \{ A \in \mathcal{L} : A \subset \Phi_{\mathcal{J}}(A) \}$$

is a topology stronger than the natural topology and it is called a \mathcal{J} -density topology.

 \Im_{α} - a some special subset of \Im Let $\dim(J_n \cup \{0\})$

$$\alpha(\mathcal{J}) = \limsup_{n \to \infty} \frac{\operatorname{dram}(J_n \cup \{0\})}{|J_n|} < \infty.$$

Put

$$\mathfrak{T}_{\alpha} = \{ \mathcal{J} \in \mathfrak{T} : \alpha(\mathcal{J}) < \infty \}.$$

If $\mathcal{J} \in \mathfrak{F}_{\alpha}$, then we have

1.
$$(\Phi_{\mathcal{J}}(A) \bigtriangleup A) \in \mathcal{N},$$

2. $\Phi_d(A) \subset \Phi_{\mathcal{J}}(A)$, where $\Phi_d(A)$ is the set of all density points of A.

Theorem 3. If $\mathcal{J} \in \mathfrak{S}_{\alpha}$, then the topology $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is von-Neuman topology associated with the Lebesgue measure. It means that:

- 1. $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is Baire space;
- 2. $(\mathbb{R}, \mathcal{T}_{\mathcal{T}})$ satisfies ccc;

3.
$$\mathbb{K}(\mathcal{T}_{\mathcal{J}}) = \{A \in \mathcal{L} \colon \lambda(A) = 0\};$$

4. $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{L}.$

Theorem 4. For every sequence of intervals $\mathcal{J} \in \mathfrak{F}_{\alpha}$ the following conditions are equivalent:

i) $\mathcal{J} \in \mathfrak{S}_{\alpha}$;

ii) $\mathcal{T}_d \subset \mathcal{T}_{\mathcal{J}}$, where \mathcal{T}_d is a classical density topology.

Let $\mathcal{J} \in \mathfrak{S}_{\alpha}$. We have the following properties:

- (a) $A \in \mathcal{N}$ if and only if A is a closed and discrete set with respect to a topology $\mathcal{T}_{\mathcal{J}}$;
- (b) a set $A \subset \mathbb{R}$ is compact with respect to a topology $\mathcal{T}_{\mathcal{J}}$ if and only if A is finite;

- (c) $\mathcal{N} = \mathbb{K}(\mathcal{T}_{\mathcal{J}})$ and $\mathcal{L} = \mathcal{B}a(\mathcal{T}_{\mathcal{J}});$
- (d) $\mathcal{B}(\mathcal{T}_{\mathcal{J}}) = \mathcal{L};$
- (e) $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is neither first countable, nor second countable, nor separable, nor Lindelöf space.

Theorem 5. For every sequence of intervals $J = \{J_n\}_{n \in \mathbb{N}} \in \mathfrak{T}$ there exists a sequence of intervals $K = \{K_n\}_{n \in \mathbb{N}} \in \mathfrak{T}$ such that

$$\mathcal{T}_{\mathcal{J}} \setminus \mathcal{T}_K \neq \emptyset \text{ and } \mathcal{T}_K \setminus \mathcal{T}_{\mathcal{J}} \neq \emptyset.$$

4 A \mathcal{J} -approximately continuous function

Let $f : \mathbb{R} \to \mathbb{R}$ and $\mathcal{J} \in \mathfrak{S}$.

We shall say that f is \mathcal{J} -approximately continuous at a point $x_0 \in \mathbb{R}$ if there exists a set $A_{x_0} \in \mathcal{L}$ such that

$$x_0 \in \Phi_{\mathcal{J}}(A_{x_0}) \text{ and } f(x_0) = \lim_{\substack{x \to x_0, \ x \in A_{x_0}}} f(x).$$

Theorem 6. Let $f : \mathbb{R} \to \mathbb{R}$ be a Lebesgue measurable function and let $\mathcal{J} \in \mathfrak{S}$. The function f is \mathcal{J} -approximately continuous at a point $x_0 \in \mathbb{R}$ if and only if the following condition is fulfilled:

$$\underset{\varepsilon>0}{\forall} x_0 \in \Phi_{\mathcal{J}}(\{x \in \mathbb{R} : |f(x) - f(x_0)| < \varepsilon\}).$$

Theorem 7. A function $f : \mathbb{R} \to \mathbb{R}$ is a Lebesgue measurable if and only if there exists a sequence $\mathcal{J} \in \mathfrak{S}$ and a set $B_{\mathcal{J}} \in \mathcal{N}$ such that the function f is \mathcal{J} -approximately continuous at each point $x \in \mathbb{R} \setminus B_{\mathcal{J}}$.

Theorem 8. Let $f : \mathbb{R} \to \mathbb{R}$ and $\mathcal{J} \in \mathfrak{S}$. The function f is \mathcal{J} -approximately continuous if and only if for any $a \in \mathbb{R}$ the sets $E_a = \{x \in \mathbb{R} : f(x) < a\}$ and $E^a = \{x \in \mathbb{R} : f(x) > a\}$ belong to the topology $\mathcal{T}_{\mathcal{J}}$.

Theorem 9. Let $f : \mathbb{R} \to \mathbb{R}$ and $\mathcal{J} \in \mathfrak{S}$. The function f is \mathcal{J} -approximately continuous if and only if $f \in C_{\mathcal{T}_{nat}}^{\mathcal{T}_{\mathcal{J}}}$.

 $\mathcal{C}_{\mathcal{T}_{nat}}^{\mathcal{T}_{\mathcal{J}}}$ is the family of all continuous functions $f:(\mathbb{R},\mathcal{T}_{\mathcal{J}})\to(\mathbb{R},\mathcal{T}_{nat}).$

Theorem 10. Let $\mathcal{J} \in \mathfrak{S}$. If $f : \mathbb{R} \to \mathbb{R}$ is a \mathcal{J} -approximately continuous function, then f belongs to the first class of Baire.

4

5

5 The separation axioms

Theorem 11. For any $\mathcal{J} \in \mathfrak{T}$ the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is a Hausdorff space.

Theorem 12. For any $\mathcal{J} \in \mathfrak{S}_{\alpha}$ the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is regular.

Theorem 13 (An analogue of Lusin-Menchoff Theorem). Let $\mathcal{J} \in \mathfrak{F}_{\alpha}$ and E be a Lebesgue measurable set. Then for every \mathcal{T}_{nat} -closed set X such that $X \subset (E \cap \Phi_{\mathcal{J}}(E))$, there exists a \mathcal{T}_{nat} -perfect set P such that $X \subset P \subset E$ and $X \subset \Phi_{\mathcal{J}}(P)$.

Theorem 14. Let $\mathcal{J} \in \mathfrak{F}_{\alpha}$ and E is a F_{σ} set such that $E \subset \Phi_{\mathcal{J}}(E)$). Then there exists a \mathcal{J} -approximately continuous function f such that

- 1) $0 < f(x) \le 1$ for $x \in E$,
- 2) f(x) = 0 for $x \notin E$.

Theorem 15. For every $\mathcal{J} \in \mathfrak{S}_{\alpha}$ the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is completely regular.

Theorem 16. For any $\mathcal{J} \in \mathfrak{S}$ the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is not normal.

Problem 17. Is the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ regular (completely regular) for every sequence of intervals $\mathcal{J} \in \mathcal{J}$?

References

- A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics 659, Springer - Verlag, 1978.
- [2] T. Filipczak, Density type topologies generated by functions, Traditional and present-day topics in real analysis, Łodź University Press, 2013.
- [3] M. Filipczak, J. Hejduk, On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ. 28 2004, 187–197.
- [4] J. Hejduk, A. Loranty, R. Wiertelak, *J*-approximately continuous functions, Tatra Mt. Math. Publications 62 (2015), 45–55.
- [5] J. Hejduk, R. Wiertelak, On the generalization of density topologies on the real line, Math. Slovaca 64(5) (2014), 1267–1276.
- [6] A. Loranty, On the generalization of the approximate continuity, Folia Math. 10(1) (2003), 59–65.
- [7] W. Wilczyński, Density topologies, Chapter 15 in Handbook of Measure Theory, Ed. E. Pap, Elsevier 2002, 675–702.