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DIFFERENTIABLE EXTENSIONS FROM
A CLOSED SET

Let us recall a result from the talk of Martin Koc on extensions of differ-
entiable functions defined on a closed set.

Corollary (Koc, Kolář [4, Corollary 4.4/5]). Let Y be a normed linear space,
H ⊂ Rn a closed set, f : H → Y a function and L : H → L(Rn, Y ) a relative
derivative of f (on H). Assume that L is Baire one on H. Then there is
f̄ : Rn → Y such that

(1) f̄ is differentiable on Rn,

(2) f̄ = f and (f̄)′ = L on H,

(3) if a ∈ H, L is continuous at a and L(a) is a (relative) strict derivative of
f at a then (f̄)′ is continuous at a,

(4) f is C∞ on Rn \H.

Note that a candidate derivative L is required and assumed to be Baire
one. Here we present results where this requirement is removed and replaced
by conditions on the set H. This goal is motivated by Section 4 of [5].

Definition 1 (Contingent and paratingent). For H ⊂ Rn and x ∈ Rn, define

Tan(H,x) = {v ∈ Rn : ∃xk ∈ H, αk ∈ [0,∞), xk → x,

such that αk (xk − x)→ v},

the contingent cone (sometimes also the tangent cone) of H at x, and

Ptg(H,x) = {v ∈ Rn : ∃xk, yk ∈ H, αk ∈ R, xk → x, yk → x,

such that αk (yk − xk)→ v},

the paratingent cone of H at x.
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Note that Tan(H,x) ⊂ Ptg(H,x). Let derH denote the set of accumula-
tion points of H.

Definition 2. Let H be a subset of Rn. For x ∈ Rn let

aH(x) = sup
{
|det(v1, . . . , vn)| : v1, . . . , vn unit vectors from Tan(H,x)

}
,

pH(x) = sup
{
|det(v1, . . . , vn)| : v1, . . . , vn unit vectors from Ptg(H,x)

}
.

The following simply formulated result already generalizes [5, Proposi-
tion 4.10]: Tan(H,x) is replaced by a larger set Ptg(H,x). Moreover, vector-
valued mappings are allowed.

Proposition 3. Let H ⊂ Rn be a nonempty closed set such that Ptg(H,x)
spans Rn for every x ∈ derH. Let Y be a normed linear space and f : H → Y
a function (relatively) strictly differentiable at every x ∈ derH. Then there
exists a differentiable extension of f defined on Rn.

Proposition 4. Under the assumptions of the previous Proposition, there
exists a differentiable extension f̄ : Rn → Y of f (which is C∞ on Rn \ H)
such that:
f̄ is strictly differentiable at x (with respect to Rn) and the derivative of f̄ is
continuous at x (with respect to Rn) for

(a) all x ∈ Rn \ derH and

(b) all x ∈ derH where the (unique) relative strict derivative of f with respect
to derH is continuous,

(c) and hence, in particular, for all x ∈ derH such that there is rx > 0 and
px > 0 such that pH(z) ≥ px for all z ∈ B(x, rx) ∩ derH.

Proposition 5 (Vector generalization of [5, Corollary 4.3]). Let H ⊂ Rn be
a nonempty closed set. Assume derH =

⋃
m∈NDm where, for each m ∈ N, Dm

is a closed subset of H and there is a positive number am such that aH(x) ≥ am
for every x ∈ Dm.

Let Y be a normed linear space, f : H → Y a function. Assume that, for
every x ∈ derH, f is (relatively) differentiable at x.

Then there exists a differentiable extension f̄ : Rn → Y of f .

Proposition 6 (a generalization of [5, Theorem 4.6] and [5, Corollary 4.7]).
Let H ⊂ Rn be a nonempty closed set satisfying the following condition which
is equivalent to (C) in [5, p. 1035]:

(C) inf
{
aH(y) : y ∈ (derH) ∩B(0, R)

}
> 0 for every R ∈ (1,∞).
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Let Y be a normed linear space, f : H → Y a function and assume that the
relative derivative of f at x exists for every x ∈ derH. Then there is a differ-
entiable extension f̄ : Rn → Y of f such that

(a) f̄ is C∞ on Rn \H and C1 on Rn \ derH,

(b) f̄ is strictly differentiable at x and the derivative of f̄ is continuous at x
for all x ∈ derH where f is relatively strictly differentiable.

Proposition 7 (another generalization of [5, Corollary 4.7]). Let H ⊂ Rn be
a nonempty closed set, Y a normed linear space, f : H → Y a function and
assume that the relative strict derivative of f at x exists for every x ∈ derH.
Moreover, let the following condition hold:

(CPtg) inf
{
pH(y) : y ∈ (derH) ∩B(0, R)

}
> 0 for every R ∈ (1,∞).

Then there is an extension f̄ : Rn → Y of f that is C1 on Rn and C∞

on Rn \H.

Proposition 8 (a joint generalization of Proposition 6 and Proposition 7).
Let H ⊂ Rn be a nonempty closed set, and S ⊂ derH. Assume that,

for every x ∈ derH, there exists rx, dx > 0 such that(C∗)

pH(y) ≥ dx for every y ∈ B(x, rx) ∩ S and

aH(y) ≥ dx for every y ∈ B(x, rx) ∩ (derH) \ S.

Let Y be a normed linear space, f : H → Y a function and assume that,
for every x ∈ (derH) \ S, f is relatively differentiable at x and, for every
x ∈ S, f is relatively strictly differentiable at x. Then there is a differentiable
extension f̄ : Rn → Y of f such that

(a) f̄ is C∞ on Rn \H and C1 on Rn \ derH,

(b) f̄ is strictly differentiable at x and the derivative of f̄ is continuous at x
for every x ∈ S.

Corollary 9 (C1-case of Whitney’s theorem). Let H ⊂ Rn be a nonempty
closed set, Y a normed linear space, f : H → Y a function, E ⊂ H a set that
contains derH.

Let L : E → L(Rn, Y ) be given such that, for every x ∈ E, L(x) is a (rela-
tive) strict derivative of f at x (with respect to H). Assume L is continuous.

Then there is an extension f̄ : Rn → Y of f that is C1 on Rn and C∞

on Rn \H such that (f̄)′(x) = L(x) for every x ∈ E.
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Theorem 10. Let H ⊂ Rn be a nonempty closed set. Assume derH ⊂ E :=⋃
m∈NEm, where, for each m ∈ N, Em is closed, Em = Wm ∪ Dm ∪ Sm .

Assume

(1) for every m, there is am > 0 such that aH(x) ≥ am for every x ∈ Dm.

(2) Ptg(H,x) spans Rn for every x ∈
⋃

m∈N Sm.

Let Y a normed linear space, f : H → Y a function. Let L : E → L(Rn, Y )
be defined as follows: For x ∈

⋃
mDm, L(x) is a (relative) derivative of f at

x with respect to H and, for x ∈
⋃

m Sm, L(x) is a (relative) strict derivative
of f at x with respect to H. (The derivatives are unique if they exist.)
For x ∈ E \

⋃
m(Dm ∪ Sm), let L(x) be an arbitrary (relative) derivative of f

at x with respect to H. Also assume, for every m ∈ N and x ∈Wm , that L|Em

is continuous at x.
Then there exists a differentiable extension f̄ : Rn → Y of f such that

(a) (f̄)′(x) = L(x) for every x ∈ E.

(b) f̄ is C∞ on Rn \H and C1 on Rn \ derH,

(c) f̄ is strictly differentiable at x (with respect to Rn) and the derivative of f̄
is continuous at x (with respect to Rn) for all x ∈ derH such that L(x) is
a (relative) strict derivative of f (with respect to H) and L is continuous
at x (with respect to E),

(d) in particular, f̄ is strictly differentiable at x (with respect to Rn) and the
derivative of f̄ is continuous at x (with respect to Rn) for all x ∈ derH
such that

(i) L(x) is a (relative) strict derivative of f (with respect to H),

(ii) L is continuous at x with respect to {x} ∪
⋃

m∈NWm and

(iii) there exists rx > 0, ax > 0 and px > 0 such that we have
aH(z) ≥ ax for every z ∈

⋃
m∈NDm ∩B(x, rx), and

pH(z) ≥ px for every z ∈
⋃

m∈N Sm ∩B(x, rx),
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