Jan Kolář,* Institute of Mathematics of the Czech Academy of Sciences. email: kolar@math.cas.cz

DIFFERENTIABLE EXTENSIONS FROM A CLOSED SET

Let us recall a result from the talk of Martin Koc on extensions of differentiable functions defined on a closed set.

Corollary (Koc, Kolář [4, Corollary 4.4/5]). Let Y be a normed linear space, $H \subset \mathbb{R}^n$ a closed set, $f: H \to Y$ a function and $L: H \to \mathcal{L}(\mathbb{R}^n, Y)$ a relative derivative of f (on H). Assume that L is Baire one on H. Then there is $\overline{f}: \mathbb{R}^n \to Y$ such that

- (1) \overline{f} is differentiable on \mathbb{R}^n ,
- (2) $\overline{f} = f$ and $(\overline{f})' = L$ on H,
- (3) if $a \in H$, L is continuous at a and L(a) is a (relative) strict derivative of f at a then $(\bar{f})'$ is continuous at a,
- (4) f is \mathcal{C}^{∞} on $\mathbb{R}^n \setminus H$.

Note that a candidate derivative L is required and assumed to be Baire one. Here we present results where this requirement is removed and replaced by conditions on the set H. This goal is motivated by Section 4 of [5].

Definition 1 (Contingent and paratingent). For $H \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, define

$$\operatorname{Tan}(H, x) = \{ v \in \mathbb{R}^n : \exists x_k \in H, \ \alpha_k \in [0, \infty), \ x_k \to x, \\ \text{such that } \alpha_k \left(x_k - x \right) \to v \},$$

the contingent cone (sometimes also the tangent cone) of H at x, and

$$Ptg(H, x) = \{ v \in \mathbb{R}^n : \exists x_k, y_k \in H, \ \alpha_k \in \mathbb{R}, \ x_k \to x, \ y_k \to x, \\ such that \ \alpha_k (y_k - x_k) \to v \},$$

the paratingent cone of H at x.

1

Mathematical Reviews subject classification: Primary: 26B05, 26B12; Secondary: 54C20 Key words: extensions, differentiability, strict differentiability, vector-valued functions, continuous derivative

^{*}Supported by grants No. 14-07880S of GA ČR and RVO: 67985840.

Note that $\operatorname{Tan}(H, x) \subset \operatorname{Ptg}(H, x)$. Let der H denote the set of accumulation points of H.

Definition 2. Let *H* be a subset of \mathbb{R}^n . For $x \in \mathbb{R}^n$ let

 $a_H(x) = \sup\{|\det(v_1, \dots, v_n)| : v_1, \dots, v_n \text{ unit vectors from } \operatorname{Tan}(H, x)\},\$ $p_H(x) = \sup\{|\det(v_1, \dots, v_n)| : v_1, \dots, v_n \text{ unit vectors from } \operatorname{Ptg}(H, x)\}.$

The following simply formulated result already generalizes [5, Proposition 4.10]: Tan(H, x) is replaced by a larger set Ptg(H, x). Moreover, vector-valued mappings are allowed.

Proposition 3. Let $H \subset \mathbb{R}^n$ be a nonempty closed set such that Ptg(H, x)spans \mathbb{R}^n for every $x \in \det H$. Let Y be a normed linear space and $f: H \to Y$ a function (relatively) strictly differentiable at every $x \in \det H$. Then there exists a differentiable extension of f defined on \mathbb{R}^n .

Proposition 4. Under the assumptions of the previous Proposition, there exists a differentiable extension $\overline{f} \colon \mathbb{R}^n \to Y$ of f (which is C^{∞} on $\mathbb{R}^n \setminus H$) such that:

 \overline{f} is strictly differentiable at x (with respect to \mathbb{R}^n) and the derivative of \overline{f} is continuous at x (with respect to \mathbb{R}^n) for

- (a) all $x \in \mathbb{R}^n \setminus \det H$ and
- (b) all $x \in \det H$ where the (unique) relative strict derivative of f with respect to der H is continuous,
- (c) and hence, in particular, for all $x \in \det H$ such that there is $r_x > 0$ and $p_x > 0$ such that $p_H(z) \ge p_x$ for all $z \in B(x, r_x) \cap \det H$.

Proposition 5 (Vector generalization of [5, Corollary 4.3]). Let $H \subset \mathbb{R}^n$ be a nonempty closed set. Assume der $H = \bigcup_{m \in \mathbb{N}} D_m$ where, for each $m \in \mathbb{N}$, D_m is a closed subset of H and there is a positive number a_m such that $a_H(x) \ge a_m$ for every $x \in D_m$.

Let Y be a normed linear space, $f: H \to Y$ a function. Assume that, for every $x \in \det H$, f is (relatively) differentiable at x.

Then there exists a differentiable extension $\overline{f} \colon \mathbb{R}^n \to Y$ of f.

Proposition 6 (a generalization of [5, Theorem 4.6] and [5, Corollary 4.7]). Let $H \subset \mathbb{R}^n$ be a nonempty closed set satisfying the following condition which is equivalent to (C) in [5, p. 1035]:

(C)
$$\inf \left\{ a_H(y) : y \in (\det H) \cap \overline{B(0,R)} \right\} > 0 \quad \text{for every } R \in (1,\infty).$$

Let Y be a normed linear space, $f: H \to Y$ a function and assume that the relative derivative of f at x exists for every $x \in \det H$. Then there is a differentiable extension $\overline{f}: \mathbb{R}^n \to Y$ of f such that

- (a) \overline{f} is C^{∞} on $\mathbb{R}^n \setminus H$ and C^1 on $\mathbb{R}^n \setminus \det H$,
- (b) \overline{f} is strictly differentiable at x and the derivative of \overline{f} is continuous at x for all $x \in \det H$ where f is relatively strictly differentiable.

Proposition 7 (another generalization of [5, Corollary 4.7]). Let $H \subset \mathbb{R}^n$ be a nonempty closed set, Y a normed linear space, $f: H \to Y$ a function and assume that the relative strict derivative of f at x exists for every $x \in \det H$. Moreover, let the following condition hold:

$$(\mathbf{C}^{\mathrm{Ptg}}) \quad \inf\left\{p_H(y) : y \in (\det H) \cap \overline{B(0,R)}\right\} > 0 \qquad for \ every \ R \in (1,\infty).$$

Then there is an extension $\overline{f} \colon \mathbb{R}^n \to Y$ of f that is C^1 on \mathbb{R}^n and C^{∞} on $\mathbb{R}^n \setminus H$.

Proposition 8 (a joint generalization of Proposition 6 and Proposition 7). Let $H \subset \mathbb{R}^n$ be a nonempty closed set, and $S \subset \det H$. Assume that,

(C*) for every $x \in \det H$, there exists $r_x, d_x > 0$ such that $p_H(y) \ge d_x$ for every $y \in B(x, r_x) \cap S$ and $a_H(y) \ge d_x$ for every $y \in B(x, r_x) \cap (\det H) \setminus S$.

Let Y be a normed linear space, $f: H \to Y$ a function and assume that, for every $x \in (\det H) \setminus S$, f is relatively differentiable at x and, for every $x \in S$, f is relatively strictly differentiable at x. Then there is a differentiable extension $\overline{f}: \mathbb{R}^n \to Y$ of f such that

- (a) \overline{f} is C^{∞} on $\mathbb{R}^n \setminus H$ and C^1 on $\mathbb{R}^n \setminus \det H$,
- (b) \overline{f} is strictly differentiable at x and the derivative of \overline{f} is continuous at x for every $x \in S$.

Corollary 9 (C^1 -case of Whitney's theorem). Let $H \subset \mathbb{R}^n$ be a nonempty closed set, Y a normed linear space, $f: H \to Y$ a function, $E \subset H$ a set that contains der H.

Let $L: E \to \mathcal{L}(\mathbb{R}^n, Y)$ be given such that, for every $x \in E$, L(x) is a (relative) strict derivative of f at x (with respect to H). Assume L is continuous.

Then there is an extension $\overline{f} \colon \mathbb{R}^n \to Y$ of f that is C^1 on \mathbb{R}^n and C^{∞} on $\mathbb{R}^n \setminus H$ such that $(\overline{f})'(x) = L(x)$ for every $x \in E$. **Theorem 10.** Let $H \subset \mathbb{R}^n$ be a nonempty closed set. Assume der $H \subset E := \bigcup_{m \in \mathbb{N}} E_m$, where, for each $m \in \mathbb{N}$, E_m is closed, $E_m = W_m \cup D_m \cup S_m$. Assume

(1) for every m, there is $a_m > 0$ such that $a_H(x) \ge a_m$ for every $x \in D_m$.

(2) $\operatorname{Ptg}(H, x)$ spans \mathbb{R}^n for every $x \in \bigcup_{m \in N} S_m$.

Let Y a normed linear space, $f: H \to Y$ a function. Let $L: E \to \mathcal{L}(\mathbb{R}^n, Y)$ be defined as follows: For $x \in \bigcup_m D_m$, L(x) is a (relative) derivative of f at x with respect to H and, for $x \in \bigcup_m S_m$, L(x) is a (relative) strict derivative of f at x with respect to H. (The derivatives are unique if they exist.)

For $x \in E \setminus \bigcup_m (D_m \cup S_m)$, let L(x) be an arbitrary (relative) derivative of f at x with respect to H. Also assume, for every $m \in \mathbb{N}$ and $x \in W_m$, that $L|_{E_m}$ is continuous at x.

Then there exists a differentiable extension $\overline{f} \colon \mathbb{R}^n \to Y$ of f such that

- (a) $(\bar{f})'(x) = L(x)$ for every $x \in E$.
- (b) \overline{f} is C^{∞} on $\mathbb{R}^n \setminus H$ and C^1 on $\mathbb{R}^n \setminus \det H$,
- (c) \overline{f} is strictly differentiable at x (with respect to \mathbb{R}^n) and the derivative of \overline{f} is continuous at x (with respect to \mathbb{R}^n) for all $x \in \det H$ such that L(x) is a (relative) strict derivative of f (with respect to H) and L is continuous at x (with respect to E),
- (d) in particular, \overline{f} is strictly differentiable at x (with respect to \mathbb{R}^n) and the derivative of \overline{f} is continuous at x (with respect to \mathbb{R}^n) for all $x \in \det H$ such that
 - (i) L(x) is a (relative) strict derivative of f (with respect to H),
 - (ii) L is continuous at x with respect to $\{x\} \cup \bigcup_{m \in \mathbb{N}} W_m$ and
 - (iii) there exists $r_x > 0$, $a_x > 0$ and $p_x > 0$ such that we have $a_H(z) \ge a_x$ for every $z \in \bigcup_{m \in \mathbb{N}} D_m \cap B(x, r_x)$, and $p_H(z) \ge p_x$ for every $z \in \bigcup_{m \in \mathbb{N}} S_m \cap B(x, r_x)$,

References

- V. Aversa, M. Laczkovich, D. Preiss, *Extension of differentiable func*tions, Comment Math. Univ. Carolin., 26 (1985) 597–609.
- [2] J. Kolář, in preparation.
- [3] M. Koc, J. Kolář, Extensions of vector-valued Baire one functions with preservation of points of continuity,
 J. Math. Anal. Appl., 442(1) (2016) 138–148.

- [4] M. Koc, J. Kolář, Extensions of vector-valued functions with preservation of derivatives, arXiv:1602.05750v1 [math.CA] (http: //arxiv.org/abs/1602.05750v1).
- [5] M. Koc, L. Zajíček, A joint generalization of Whitney's C¹ extension theorem and Aversa-Laczkovich-Preiss' extension theorem, J. Math. Anal. Appl., 388 (2012) 1027–1039.