Unconditional convergence for wavelet frame expansions

Elena Lebedeva

Saint-Petersburg State University, Russia

We study unconditional convergence for wavelet frame expansions in $L_p(\mathbb{R})$.

Let $\{\psi_{j,k}\}_{(j,k)\in\mathbb{Z}^2}$, $\{\tilde{\psi}_{j,k}\}_{(j,k)\in\mathbb{Z}^2}$ be dual wavelet frames in $L_2(\mathbb{R})$, let η be an even, bounded, decreasing on $[0, \infty)$ function such that $\int_0^\infty \eta(x) \ln(1+x) dx < \infty$, and $|\psi(x)|, |\tilde{\psi}(x)| \leq \eta(x)$. Than the series $\sum_{j,k\in\mathbb{Z}} (f, \tilde{\psi}_{j,k}) \psi_{j,k}$ is unconditional convergent in $L_p(\mathbb{R})$, 1 .